Highly toxic phosgene,diethyl chlorophosphate(DCP)and volatile acyl chlorides endanger our life and public security.To achieve facile sensing and discrimination of multiple target analytes,herein,we presented a single...Highly toxic phosgene,diethyl chlorophosphate(DCP)and volatile acyl chlorides endanger our life and public security.To achieve facile sensing and discrimination of multiple target analytes,herein,we presented a single fluorescent probe(BDP-CHD)for high-throughput screening of phosgene,DCP and volatile acyl chlorides.The probe underwent a covalent cascade reaction with phosgene to form boron dipyrromethene(BODIPY)with bright green fluorescence.By contrast,DCP,diphosgene and acyl chlorides can covalently assembled with the probe,giving rise to strong blue fluorescence.The probe has demonstrated high-throughput detection capability,high sensitivity,fast response(within 3 s)and parts per trillion(ppt)level detection limit.Furthermore,a portable platform based on BDP-CHD was constructed,which has achieved high-throughput discrimination of 16 analytes through linear discriminant analysis(LDA).Moreover,a smartphone adaptable RGB recognition pattern was established for the quantitative detection of multi-analytes.Therefore,this portable fluorescence sensing platform can serve as a versatile tool for rapid and high-throughput detection of toxic phosgene,DCP and volatile acyl chlorides.The proposed“one for more”strategy simplifies multi-target discrimination procedures and holds great promise for various sensing applications.展开更多
Phosgene is highly toxic, and it plays a role in the depletion of the ozone layer. The ground state geometric structure and spectral characteristic of phosgene in various external electric fields were calculated via t...Phosgene is highly toxic, and it plays a role in the depletion of the ozone layer. The ground state geometric structure and spectral characteristic of phosgene in various external electric fields were calculated via the density-functional theory (DFT) and time-dependent density-functional theory (TDDFT) with the B3LYP/6-31+G(d) basis set. With external electric field, the structure of phosgene changed significantly. With increasing electric field, the bond lengths of 1C-3Cl and 1C-4Cl increased;the total energy and energy gap initially increased and then decreased, whereas the dipole moment initially decreased and then increased. Most of the IR vibrational frequencies were redshifted. The wavelength of the singlet excited state increased, reflecting a red shift, and the oscillator strengths of most transitions belonged to forbidden transitions. These results are of great significance for studying the dissociation of phosgene in external electric field.展开更多
Developing high-efficiency catalyst is crucial for electrochemical conversion of carbon dioxide(CO_(2))to high-value products.In the present work,a three-chamber electrolysis cell has been developed for CO_(2)reductio...Developing high-efficiency catalyst is crucial for electrochemical conversion of carbon dioxide(CO_(2))to high-value products.In the present work,a three-chamber electrolysis cell has been developed for CO_(2)reduction to carbon monoxide(CO)in an organic electrolyte,with sodium hydroxide(NaOH)and chlorine(Cl_(2))produced as byproducts.In order to improve the performance of the three-chamber electrolyzer,a gallium-based(Ga-based)ternary-porous catalyst(Ga-In_(4)Ag_(9))has been fabricated.During the long-term electrolysis process,Ga-In_(4)Ag_(9)catalyst exhibits good performance toward CO_(2)reduction reaction(CO_(2)RR),the CO partial current density achieves to 139.21 mA·cm^(-2)at-2.4 V(vs.SHE),with the Faraday efficiency(FE)of CO formation stabled at 92.3%.Density functional theory(DFT)analysis reveals that the position of the d-band center of Ga-In_(4)Ag_(9)is regulated by silver(Ag)atoms,which is beneficial for enhancing the binding ability between the catalyst and the intermediate.Owing to the adsorption of Cl^(-)on the surface of Ga-In_(4)Ag_(9),the reconfiguration of electron density has been altered,which is beneficial for the stabilization of*CO_(2)-intermediate.This work provides valuable insights for designing Ga-based metal catalysts toward CO_(2)electrolysis to produce high-value chemicals.展开更多
Several orders of magnitude of change in resistance are observed upon chemical doping and dedoping of the conducting polymer polyaniline.This large conductivity range can be utilized to make sensitive chemical sensors...Several orders of magnitude of change in resistance are observed upon chemical doping and dedoping of the conducting polymer polyaniline.This large conductivity range can be utilized to make sensitive chemical sensors.Polyaniline,in its nanofiber form,has even greater sensing capabilities due to the small fiber diameters,high surface area,and porous nanofiber network that enhances gas diffusion into the fibers.Polyaniline nanofibers have been synthesized using a rapid mixing method and dispersed in water allowing them to be easily modified with water soluble agents,making new composite materials.Polyaniline nanofiber composite materials can be used to enhance detection of analytes that unmodified polyaniline would not otherwise be able to detect.The detection mechanism involves the reaction of an additive with the analyte to generate a strong acid that is easily detected by polyaniline,resulting in orders of magnitude changes in resistance.The reaction of the additive alone with the analyte produces no electrical response,however.In this paper,an array of amine-polyaniline nanofiber composite materials is investigated for the detection of phosgene gas.The influence of environmental conditions such as humidity and temperature are examined and a detection mechanism is presented.展开更多
基金the financial support of the National Natural Science Foundation of China(No.22168009)。
文摘Highly toxic phosgene,diethyl chlorophosphate(DCP)and volatile acyl chlorides endanger our life and public security.To achieve facile sensing and discrimination of multiple target analytes,herein,we presented a single fluorescent probe(BDP-CHD)for high-throughput screening of phosgene,DCP and volatile acyl chlorides.The probe underwent a covalent cascade reaction with phosgene to form boron dipyrromethene(BODIPY)with bright green fluorescence.By contrast,DCP,diphosgene and acyl chlorides can covalently assembled with the probe,giving rise to strong blue fluorescence.The probe has demonstrated high-throughput detection capability,high sensitivity,fast response(within 3 s)and parts per trillion(ppt)level detection limit.Furthermore,a portable platform based on BDP-CHD was constructed,which has achieved high-throughput discrimination of 16 analytes through linear discriminant analysis(LDA).Moreover,a smartphone adaptable RGB recognition pattern was established for the quantitative detection of multi-analytes.Therefore,this portable fluorescence sensing platform can serve as a versatile tool for rapid and high-throughput detection of toxic phosgene,DCP and volatile acyl chlorides.The proposed“one for more”strategy simplifies multi-target discrimination procedures and holds great promise for various sensing applications.
基金National Natural Science Foundation of China(Grant Number:21763027)Innovation Team for Monitoring of Emerging Contaminants and Biomarkers(Grant Number:2021D14017)+2 种基金Xinjiang Regional Collaborative Innovation Project(Grant Number:2019E0223)Scientific Research Program of Colleges and Universities in Xinjiang(Grant Number:XJEDU2020Y029)“13th Five-Year”Plan for Key Discipline Physics Bidding Project of Xinjiang Normal University(Grant Number:17SDKD0602).
文摘Phosgene is highly toxic, and it plays a role in the depletion of the ozone layer. The ground state geometric structure and spectral characteristic of phosgene in various external electric fields were calculated via the density-functional theory (DFT) and time-dependent density-functional theory (TDDFT) with the B3LYP/6-31+G(d) basis set. With external electric field, the structure of phosgene changed significantly. With increasing electric field, the bond lengths of 1C-3Cl and 1C-4Cl increased;the total energy and energy gap initially increased and then decreased, whereas the dipole moment initially decreased and then increased. Most of the IR vibrational frequencies were redshifted. The wavelength of the singlet excited state increased, reflecting a red shift, and the oscillator strengths of most transitions belonged to forbidden transitions. These results are of great significance for studying the dissociation of phosgene in external electric field.
基金supported by the National Natural Science Foundation of China(Nos.52164048 and 52067012)the Natural Science Foundation of Kunming University of Science and Technology(No.KKZ3202437105)the Analysis and Testing Foundation of Kunming University of Science and Technology(No.2023P20221102026).
文摘Developing high-efficiency catalyst is crucial for electrochemical conversion of carbon dioxide(CO_(2))to high-value products.In the present work,a three-chamber electrolysis cell has been developed for CO_(2)reduction to carbon monoxide(CO)in an organic electrolyte,with sodium hydroxide(NaOH)and chlorine(Cl_(2))produced as byproducts.In order to improve the performance of the three-chamber electrolyzer,a gallium-based(Ga-based)ternary-porous catalyst(Ga-In_(4)Ag_(9))has been fabricated.During the long-term electrolysis process,Ga-In_(4)Ag_(9)catalyst exhibits good performance toward CO_(2)reduction reaction(CO_(2)RR),the CO partial current density achieves to 139.21 mA·cm^(-2)at-2.4 V(vs.SHE),with the Faraday efficiency(FE)of CO formation stabled at 92.3%.Density functional theory(DFT)analysis reveals that the position of the d-band center of Ga-In_(4)Ag_(9)is regulated by silver(Ag)atoms,which is beneficial for enhancing the binding ability between the catalyst and the intermediate.Owing to the adsorption of Cl^(-)on the surface of Ga-In_(4)Ag_(9),the reconfiguration of electron density has been altered,which is beneficial for the stabilization of*CO_(2)-intermediate.This work provides valuable insights for designing Ga-based metal catalysts toward CO_(2)electrolysis to produce high-value chemicals.
基金the Aerospace Corporation’s Independent Research and Development Program(BHW)the National Science Foundation Grant DMR 0507294(RBK).
文摘Several orders of magnitude of change in resistance are observed upon chemical doping and dedoping of the conducting polymer polyaniline.This large conductivity range can be utilized to make sensitive chemical sensors.Polyaniline,in its nanofiber form,has even greater sensing capabilities due to the small fiber diameters,high surface area,and porous nanofiber network that enhances gas diffusion into the fibers.Polyaniline nanofibers have been synthesized using a rapid mixing method and dispersed in water allowing them to be easily modified with water soluble agents,making new composite materials.Polyaniline nanofiber composite materials can be used to enhance detection of analytes that unmodified polyaniline would not otherwise be able to detect.The detection mechanism involves the reaction of an additive with the analyte to generate a strong acid that is easily detected by polyaniline,resulting in orders of magnitude changes in resistance.The reaction of the additive alone with the analyte produces no electrical response,however.In this paper,an array of amine-polyaniline nanofiber composite materials is investigated for the detection of phosgene gas.The influence of environmental conditions such as humidity and temperature are examined and a detection mechanism is presented.