In this study,protein from Porphyra haitanensis was used as raw material to prepare an antioxidant peptide,and its antioxidant activity was evaluated in vitro.A model of H_2O_2-induced oxidative damage in Hep G2 cells...In this study,protein from Porphyra haitanensis was used as raw material to prepare an antioxidant peptide,and its antioxidant activity was evaluated in vitro.A model of H_2O_2-induced oxidative damage in Hep G2 cells was established,and the effects of Porphyra haitanensis hydrolysates (PHHs) on superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were detected.Finally,the structure of PHHs was identified by ESI-MS/MS.The results showed that the 1,1-diphenyl-2-pyridylhydrazine(DPPH)-free radical-scavenging ability of PHHs was the strongest (59.28%at 1.0 mg m L~(-1)) when hydrolyzed with an acidic protease for 4 h.PHHs with different concentrations had protective effects on H_2O_2-induced damage to Hep G2 cells,and the protective effect was enhanced with increasing concentrations.When the level was 400μg m L~(-1),the cell survival rate was as high as 88.62%.Moreover,PHHs can significantly reduce oxidative damage to Hep G2 cells by H_2O_2,improve SOD activity,and reduce MDA content.The tetrapeptide Asp-Lys-Ser-Thr,with a molecular weight of 448 Da,was identified as an important fraction of PHHs by high-resolution mass spectrometry.展开更多
Introduction As one of the most frequently diagnosed devastating diseases, liver failure is responsible for approximately two million deaths annually worldwide with poor prognosis1. Although liver transplantation has ...Introduction As one of the most frequently diagnosed devastating diseases, liver failure is responsible for approximately two million deaths annually worldwide with poor prognosis1. Although liver transplantation has been developed for the most effective treatment for liver failure, it is far from demands for patients due to the shortage of high-quality donor livers and expensive treatment costs. Currently, with the development of cell therapy, cell transplantations including primary human hepatocytes (PHHs), human hepatocyte-like cells (HLCs) and liver organoids are emerging as great potential tools to alleviate this growing burden.展开更多
基金supported by the National Key R&D Pro-gram of China (No. 2018YFD0901102)the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (No. 2020KJ151)+1 种基金the Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences (No. 2020 TD69)the China Agriculture Research System (No. CARS-50)。
文摘In this study,protein from Porphyra haitanensis was used as raw material to prepare an antioxidant peptide,and its antioxidant activity was evaluated in vitro.A model of H_2O_2-induced oxidative damage in Hep G2 cells was established,and the effects of Porphyra haitanensis hydrolysates (PHHs) on superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were detected.Finally,the structure of PHHs was identified by ESI-MS/MS.The results showed that the 1,1-diphenyl-2-pyridylhydrazine(DPPH)-free radical-scavenging ability of PHHs was the strongest (59.28%at 1.0 mg m L~(-1)) when hydrolyzed with an acidic protease for 4 h.PHHs with different concentrations had protective effects on H_2O_2-induced damage to Hep G2 cells,and the protective effect was enhanced with increasing concentrations.When the level was 400μg m L~(-1),the cell survival rate was as high as 88.62%.Moreover,PHHs can significantly reduce oxidative damage to Hep G2 cells by H_2O_2,improve SOD activity,and reduce MDA content.The tetrapeptide Asp-Lys-Ser-Thr,with a molecular weight of 448 Da,was identified as an important fraction of PHHs by high-resolution mass spectrometry.
基金supported by a grant from the National Natural Science Foundation of China (Grant No. 31671452)
文摘Introduction As one of the most frequently diagnosed devastating diseases, liver failure is responsible for approximately two million deaths annually worldwide with poor prognosis1. Although liver transplantation has been developed for the most effective treatment for liver failure, it is far from demands for patients due to the shortage of high-quality donor livers and expensive treatment costs. Currently, with the development of cell therapy, cell transplantations including primary human hepatocytes (PHHs), human hepatocyte-like cells (HLCs) and liver organoids are emerging as great potential tools to alleviate this growing burden.