[Objectives]To investigate the anti-tumor molecular mechanism of acetylenic phenols against triple-negative breast cancer(TNBC)using network pharmacology and molecular docking approaches.[Methods]Based on team s previ...[Objectives]To investigate the anti-tumor molecular mechanism of acetylenic phenols against triple-negative breast cancer(TNBC)using network pharmacology and molecular docking approaches.[Methods]Based on team s previous in vitro activity screening,the most active acetylenic phenols were selected for further analysis.Genes associated with triple-negative breast cancer(TNBC)were retrieved from the GAD and OMIM databases.Using Cytoscape software,a compound-target-pathway interaction network was constructed to visualize the relationships between the acetylenic phenols,their potential targets,and related pathways.Functional enrichment analysis of GO terms and KEGG pathways was performed using the DAVID database to identify key signaling mechanisms.Furthermore,molecular docking was conducted to evaluate the binding interactions between the acetylenic phenols and the potential core targets.[Results]Acetylenic phenols exhibit potential anticancer effects by modulating multiple signaling pathways,including the PI3K-Akt pathway,cell cycle pathway,and breast cancer pathway,which are closely associated with the pathophysiological processes of triple-negative breast cancer(TNBC)such as cell proliferation,apoptosis,and cell cycle regulation.Molecular docking results indicated that acetylenic phenols bind effectively to their targets via hydrogen bonding,hydrophobic interactions,andπ-stacking,indicating strong binding affinity.[Conclusions]Acetylenic phenols exert anti-TNBC effects by modulating key targets,including EGFR,RAF1,ESR1,CHEK1,and CDC25C,and influencing associated signaling pathways.These findings reveal the molecular mechanism underlying their anti-TNBC activity and provide a theoretical foundation for the potential application of acetylenic phenols in TNBC treatment.展开更多
Four series of derivatives of vanillin,anisaldehyde,genistein and aloe emodin were prepared.The single crystal of (E)-1-(5-(4-methoxyphenyl)-3-(4-methoxystyryl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone,which was s...Four series of derivatives of vanillin,anisaldehyde,genistein and aloe emodin were prepared.The single crystal of (E)-1-(5-(4-methoxyphenyl)-3-(4-methoxystyryl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone,which was synthesized from vanillin, was obtained by spontaneous evaporation method.All the compounds were tested for the tyrosinase inhibitory activities.The results demonstrated that the IC_(50)values of vanillin,anisaldehyde,genistein and aloe emodin against mushroom tyrosinase activity are 68,49,343 and 160μM,respectively.Among the twelve derivatives,(E)-1-(5-(4-methoxyphenyl)-3-(4-methoxystyryl)-4,5- dihydro-1H-pyrazol-1-yl)ethanone from vanillin and 4,5-dimethoxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid from aloe emodin showed good inhibition against the tyrosinase with IC_(50)values of 18μM and 21μM,respectively.展开更多
Polyphenols were obtained from the natural dried Lonicerae flos by ultrasound-assisted extraction with ethanol as the solvent.Single factor experiment and response surface methodology were employed to optimize the ext...Polyphenols were obtained from the natural dried Lonicerae flos by ultrasound-assisted extraction with ethanol as the solvent.Single factor experiment and response surface methodology were employed to optimize the extraction conditions.Ultra-performance liquid chromatrography(UPLC)-tandem mass spectrometry(MS/MS)was employed to identify polyphenols based on the plant widely targeted metabolomics database in a qualitative and quantitative manner.The results showed that the optimal extraction conditions for total phenols from Lonicerae flos were ultrasound-assisted extraction with a solid-to-liquid ratio of 10∶1 g/mL and 57%ethanol at 70 W and 60°C for 11 min.The yield of total phenols extracted under the optimal conditions reached 71.08 mg/g.The phenols in Lonicerae flos were mainly chlorogenic acid isomers,and the flavonoids were mainly nobiletin,galuteolin,and homoarbutin.展开更多
Objective:To investigate the changes in total phenols,flavonoids,tannins,vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties.Methods: The changes in total phenols,total ilav...Objective:To investigate the changes in total phenols,flavonoids,tannins,vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties.Methods: The changes in total phenols,total ilavonoids,tannins,phenolic acids compounds,flavonoid components,vitamin E,P-carotene and antioxidant activity during soaking of sorghum grains were determined.Results:Total phenols,total flavonoids,tannins,vitamin E,P-carotene and antioxidant activity in raw sorghum were ranged from 109.21 to 116.70,45.91 to 54.69,1.39 to 21.79 mg/100 g,1.74 to 5.25,0.54 to 1.19 mg/kg and 21.72%to 27.69%and 25.29%to 31.97%,respectively. The above measured compounds were significantly decreased after soaking.p-Hydroxybenzoic acid,vanillic acid,syringic acid and cinnamic acid represent the major phenolic acids in Dorado variety.While ferulic acid,p-coumaric acid,gallic acid and caffeic acid represent the major phenolic acids in Shandaweel-6.On the other hand,protocatechuic acid represents the major phenolic acids in Giza-15.Regarding flavonoids components,Dorado was the highest variety in kampferol and naringenin while Shandaweel-6 was the highest variety in luteolin, apigenin,hypersoid,quercelin and christen.Finally,Giza-15 was the highest variety in catechin. Phenolic acids,flavonoid compounds and antioxidant activities were decreased after soaking. Conclusions:Sorghum varieties have moderate quantities from total phenols,total flavonoids, tannins,phenolic acids compounds,flavonoid components,vitamin E,P-carotene and antioxidant activity which decreased after soaking.展开更多
This study was conducted to determine the effect of cover crop inter-row in vineyard on main mono-phenol content of grape berry and wine. Three such cover crops, two perennial legumes (white clover and alfalfa) and ...This study was conducted to determine the effect of cover crop inter-row in vineyard on main mono-phenol content of grape berry and wine. Three such cover crops, two perennial legumes (white clover and alfalfa) and a perennial gramineous grass (tall fescue) were sown in vineyard. The main phenolic compounds of mature grape berry and wines vinified under the same conditions were extracted with ethyl acetate and diethyl ether and analyzed by high- performance liquid chromatography (HPLC) by comparing to soil tillage. A total of ten phenolic compounds were identified and quantified in the different grape berry and wines, including nonflavonoids (hydroxybenzoic and hydroxycinnamic acids) and flavonoids (flavanols and flavonols). The concentration of flavonoid compounds (409.43 to 538.63 mg kg^-1 and 56.16 to 81.30 mg L^-1) was higher than nonflavonoids (76.91 to 98.85 mg kg^-1 and 30.65 to 41.22 mg L^-1) for Cabernet Sauvignon grape and wine under different treatments, respectively. In the flavonoid phenolics, Catechin was the most abundant in the different grapes and wines, accounting for 74.94 to 79.70% and 48.60 to 50.62% of total nonanthocyanin phenolics quantified, respectively. Compared to soil tillage, the sward treatments showed a higher content of main mono-phenol and total nonanthocyanin phenolics in grapes and wines. There were significant differences between two cover crop treatments (tall fescue and white clover) and soil tillage for the content of benzoic acid, salicylic acid, caffeic acid, catechin, and total phenolics in the grape berry (P 〈 0.05 or P〈0.01). The wine from tall fescue cover crop had the highest gallic acid, caffeic acid and catechin. Cover crop system increased the total nonanthocyanin phenolics of grapes and wines in order of the four treatments: tall fescue, white clover, alfalfa, and soil tillage (control). Cover crop in vineyard increased total phenols of grape berry and wine, and thus improved the quality of wine evidently.展开更多
Qualitative and quantitative analyses of derivatized phenols in Beijing and in Xinglong were performed from 2016 to 2017 using gas chromatography-mass spectrometry.The results showed substantially more severe pollutio...Qualitative and quantitative analyses of derivatized phenols in Beijing and in Xinglong were performed from 2016 to 2017 using gas chromatography-mass spectrometry.The results showed substantially more severe pollution in Beijing.Of the 14 compounds detected,the total average concentration was 100 ng/m^3 in Beijing,compared with 11.6 ng/m^3 in Xinglong.More specifically,concentration of nitro-aromatic compounds(NACs)(81.9 ng/m^3 in Beijing and 8.49 ng/m^3 in Xinglong) was the highest,followed by aromatic acids(14.6 ng/m^3 in Beijing and 2.42 ng/m^3 in Xinglong) and aromatic aldehydes(3.62 ng/m^3 in Beijing and 0.681 ng/m^3 in Xinglong).In terms of seasonal variation,the highest concentrations were found for 4-nitrocatechol in winter in Beijing(79.1±63.9 ng/m^3) and 4-nitrophenol in winter in Xinglong(9.72±8.94 ng/m^3).The analysis also revealed diurnal variations across different seasons.Most compounds presented higher concentrations at night in winter because of the decreased boundary layer height and increased heating intensity.While some presented higher levels during the day,which attributed to the photo-oxidation process for summer and more biomass burning activities for autumn.Higher concentrations appeared in winter and autumn than in spring and summer,which resulted from more coal combustions and adverse meteorological conditions.The significant correlations among NACs indicated similar sources of pollution.Higher correlations presented within each subgroup than those between the subgroups.Good correlations between levoglucosan and nitrophenols,nitrocatechols,nitro salicylic acids,with correlation coefficients(r) of 0.66,0.69 and 0.69,respectively,indicating an important role of biomass burning among primary sources.展开更多
Brominated phenols (BPs), a widely used group of emerging flame retardants, are important environmental contaminants and exhibit endocrine disrupting potential. Method for simultaneous determination of tetrabromobis...Brominated phenols (BPs), a widely used group of emerging flame retardants, are important environmental contaminants and exhibit endocrine disrupting potential. Method for simultaneous determination of tetrabromobisphenol A (TBBPA), tribromophenol (TBP), dibromophenols (DBPs) and monobromophenols (MBPs) in soils using gas chromatography-mass spectrometry analysis (GC/MS) was successfully developed. Cleanup methods for soil extracts including several solid-phase extraction cartridges and different elution solvents were compared and optimized. Florisil cartridge with dichloromethane as the elution reagent was selected for sample cleanup owing to its high and reproducible recoveries of the target analytes in soils. Derivatization conditions were tested and the optimal conditions were obtained with 20 μL silylation reagent at room temperature. The chromatographic separation was optimized with different columns and DB-XLB column was selected for its excellent separation of the analytes. The limits of detection for the target compounds were from 0.04 to 0.19 ng/g. Mean recoveries of the compounds from spiked soils exceeded 84% with a good reproducibility, excepting that the recovery of 2-bromophenol was relatively poor (lower than 55%) due to its instability. The developed method was applied to the determination of the BPs in the soils collected from e-waste sites. The contents of BPs in the soils were at ng/g levels with TBBPA and TBP the most frequently detected. To our knowledge, this is the first report for the simultaneous determination of TBBPA, TBP, DBPs and MBPs in soils.展开更多
The changes of polyphenols in tobacco leaves during the flue-curing process and correlation analysis on some chemical components were studied. Leaf samples were taken from different tobacco-producing regions in Henan ...The changes of polyphenols in tobacco leaves during the flue-curing process and correlation analysis on some chemical components were studied. Leaf samples were taken from different tobacco-producing regions in Henan Province, China. The results indicated that the content of total phenols increased during the first 24 h of curing, and then decreased. It reached the lowest value at 72 h of curing and increased rapidly after that. The content of chlorogenic acid also increased during 0-24 h of curing. But the lowest point occurred at 60 or 72 h of curing and then it increased till the end of the curing process. The content of mtin generally increased with curing, and showed little fluctuations. The changes of PPO and POD activity were the opposite. Rutin was found to have a highly significant positive correlation with total sugar (r=0.822^**), but a highly significant negative correlation with starch, nicotine, and protein.展开更多
The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of org...The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of organic phenols with montmorillonite, illite and kaolinite in seawater is monovalent anion exchage.(2) Their isotherms of stepwise exchage on clay surfaces belong to the Langmuir type or stepwise type.(3) The discovery of the"steric hindrance effects of stepwise exchange of organic phenols on clays surfaces", and revelation of an exchange mechanisrn diffeient from that in references are the greatest achieverments in this work.展开更多
A multiproxy approach including bulk organic carbon, δ^(13) C, lignin phenols, and lipid biomarker analyses were applied to characterize the source and composition of sedimentary organic matter in the head part of Th...A multiproxy approach including bulk organic carbon, δ^(13) C, lignin phenols, and lipid biomarker analyses were applied to characterize the source and composition of sedimentary organic matter in the head part of Three Gorges Reservoir. OM consisted of both natural(autochthonous and allochthonous) and anthropogenic inputs.The natural OM included input from vascular plants,especially non-woody angiosperms. The allochthonous input included plankton and microbial production, likely due to localized eutrophication. Anthropogenic inputs likely derived from petroleum input and/or urban activities.Other anthropogenic inputs were untreated sewage waste.These influences were concluded to be regionally specific point sources of pollution based on relative distributions and on the fact that molecular characteristics of sedimentary OM were not distributed smoothly along a gradient.展开更多
Certain phenols and naphthols were nitrated regioselectively with Zn(NO)·6HO/TCT in acetonitrile as solvent at room temperature and short reaction time in good yields.The reaction condition was mild.TCT is a chea...Certain phenols and naphthols were nitrated regioselectively with Zn(NO)·6HO/TCT in acetonitrile as solvent at room temperature and short reaction time in good yields.The reaction condition was mild.TCT is a cheap and commercially available reagent.It performed as an acid catalyst in this transformation.展开更多
Catalytic hydrodeoxygenation(HDO)of biomass-derived oxy-compounds to advanced hydrocarbon fuels usually requires bifunctional catalysts containing metals and acidic sites.The appropriate tuning of metal and/or acidic ...Catalytic hydrodeoxygenation(HDO)of biomass-derived oxy-compounds to advanced hydrocarbon fuels usually requires bifunctional catalysts containing metals and acidic sites.The appropriate tuning of metal and/or acidic active sites at interfaces of bifunctional catalysts can significantly improve catalyst activity and product selectivity.Here,4-trifuoromethyl salicylic acid(TFMSA),as a hydrothermal stable organic acid,was employed to tailor the bifunctional interface of Ru/γ-Al_(2)O_(3)to enhance the catalytic performance on converting lignin-derived phenols to jet fuel range cycloalkanes.More than 80%phenol was converted into cyclohexane at 230°C for 1 h over Ru/γ-Al_(2)O_(3)modified by TFMSA,which was about three times higher than that over unmodified Ru/γ-Al_(2)O_(3).X-ray diffraction(XRD),Transmission electron microscope(TEM),H2 chemisorption,and energy dispersive X-ray spectroscopy(EDS)elemental mapping results indicated that Ru nanoparticles and TFMSA were well distributed onγ-Al_(2)O_(3),and a nanoscale intimacy between Ru and TFMSA was reached.Meanwhile,Fourier transform infrared spectroscopy after pyridine adsorption(Py-FT-IR)analysis proved that Brønsted acidic sites on the catalytic interfaces of TFMSA modified Ru/γ-Al_(2)O_(3)had been improved.Moreover,the kinetic and density functional theory(DFT)results suggested that the synergistic effects of adjacent Ru nanoparticles and acidic sites were crutial for promoting the rate-limiting conversion step of phenol HDO to cyclohexane.展开更多
A single-drop liquid phase micro-extraction procedure using 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) was demonstrated for the sensitive determination of four phenols in water samples. Under the...A single-drop liquid phase micro-extraction procedure using 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) was demonstrated for the sensitive determination of four phenols in water samples. Under the optimized conditions, the linear range of proposed method was excellent in the range of 0.5-100 μg·L^-1, the reproducibility (RSD, n=6) were in the range 5.4%-8.9% and detection limits (S/N=3) were 0.3, 0.3, 0.5 and 0.5 μg·L^-1 for 2, 4-dichlorophenol, 2-naphthol, 2-nitrophenol and 4-chlorophenol, respectively. The experimental results indicated that the effect of complex matrices natural water samples could be resolved with addition of sodium ethylene diamine tetracetate (EDTA) into the samples. Excellent spiked recoveries were achieved for these four phenols ranged from 86.2%-114.9 %. All these facts demonstrated that the proposed method with merits of low cost, simplicity and easy operating would be a competitive alternative procedure for the determination of such compounds at trace level.展开更多
Nanocrystalline TiO_2 was used as an efficient and recyclable catalyst for the chemoselective trimethylsilylation of primary and less hindered secondary alcohols and phenols with hexamethyldisilazane(HMDS).All react...Nanocrystalline TiO_2 was used as an efficient and recyclable catalyst for the chemoselective trimethylsilylation of primary and less hindered secondary alcohols and phenols with hexamethyldisilazane(HMDS).All reactions were performed under mild and completely heterogeneous conditions in good to excellent yields.展开更多
A variety of alcohols and phenols are efficiently acetylated with acetic anhydride in the presence of a catalytic amount of V(HSO4)3 in solution and under solvent free conditions. Mild reaction conditions, high yiel...A variety of alcohols and phenols are efficiently acetylated with acetic anhydride in the presence of a catalytic amount of V(HSO4)3 in solution and under solvent free conditions. Mild reaction conditions, high yields of the products, easy procedure and selective acetylation of alcohols and phenols in the presence of amines and thiols are the main advantages of this procedure.展开更多
A catalytic method was developed to synthesize substituted phenols from the corresponding aryl bromides and chlorides under mild conditions (yields = 34-92%). 4-Methoxylbenzyl alcohol was used as water surrogate and...A catalytic method was developed to synthesize substituted phenols from the corresponding aryl bromides and chlorides under mild conditions (yields = 34-92%). 4-Methoxylbenzyl alcohol was used as water surrogate and CuI/3,4,7,8-tetramethyl-1,10- phenanthroline was used as catalyst to achieve the C-O cross-coupling.展开更多
Two alkyl phenols,namely,2,5-dimethoxy-3-undecylphenol(1) and 5-methoxy-3-undecylphenol(2),were isolated together with two known benzoquinones,5-O-methylembelin(3) and 2-dehydroxy-5-O-methylembelin(4) from the...Two alkyl phenols,namely,2,5-dimethoxy-3-undecylphenol(1) and 5-methoxy-3-undecylphenol(2),were isolated together with two known benzoquinones,5-O-methylembelin(3) and 2-dehydroxy-5-O-methylembelin(4) from the wood of Averrhoa carambola.Their structures were elucidated on the basis of spectroscopic methods(1D and 2D NMR).展开更多
Phenols have been shown to influence the cellular proliferation and function of thyroid in experimental models. However, few human studies have investigated the association between phenol exposure and thyroid cancer, ...Phenols have been shown to influence the cellular proliferation and function of thyroid in experimental models. However, few human studies have investigated the association between phenol exposure and thyroid cancer, and the underlying mechanisms are also poorly understood. We conducted a case-control study by age- and sex-matching 143 thyroid cancer and 224 controls to investigate the associations between phenol exposures and the risk of thyroid cancer, and further to explore the mediating role of oxidative stress. We found that elevated urinary triclosan (TCS), bisphenol A (BPA) and bisphenol S (BPS) levels were associated with increased risk of thyroid cancer (all P for trends < 0.05), and the adjusted odds ratios (ORs) comparing the extreme exposure groups were 3.52 (95% confidence interval (CI):2.08, 5.95), 2.06 (95% CI: 1.06, 3.97) and 7.15 (95% CI: 3.12, 16.40), respectively. Positive associations were also observed between urinary TCS, BPA and BPS and three oxidative stress biomarkers measured by 8-hydroxy-2 -deoxyguanosine (8-OHdG), 8-iso-prostaglandin F(8-iso PGF) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), as well as between urinary 8-iso PGFand HNE-MA and the risk of thyroid cancer. Mediation analysis showed that urinary 8-iso PGFmediated 28.95%, 47.06% and 31.08% of the associations between TCS, BPA and BPS exposures and the risk of thyroid cancer, respectively (all P < 0.05). Our results suggest that exposure to TCS, BPA and BPS may be associated with increased risk of thyroid cancer and lipid peroxidation may be an intermediate mechanism. Further studies are warranted to confirm the findings.展开更多
A Cu2O/SiC heterogeneous catalyst was prepared via a two‐step liquid‐phase method using diethyleneglycol as both the solvent and the reducing agent.The catalyst was characterized using X‐raydiffraction,X‐ray photo...A Cu2O/SiC heterogeneous catalyst was prepared via a two‐step liquid‐phase method using diethyleneglycol as both the solvent and the reducing agent.The catalyst was characterized using X‐raydiffraction,X‐ray photoelectron spectroscopy,scanning electron microscopy(SEM),transmissionelectron microscopy(TEM),and H2temperature‐programmed reduction.All the results indicatethat Cu is present on the SiC support primarily as Cu2O.The SEM and TEM results show that cubicCu2O nanoparticles are uniformly dispersed on theβ‐SiC surface.The reaction conditions,namelythe temperature,reaction time,and amounts of base and catalyst used,for the Ullmann‐type C–Ocross‐coupling reaction were optimized.A model reaction was performed using iodobenzene(14.0mmol)and phenol(14.0mmol)with Cu2O/SiC(5wt%Cu)as the catalyst,Cs2CO3(1.0equiv.)as thebase,and tetrahydrofuran as the solvent at150°C for3h;a yield of97%was obtained and theturnover frequency(TOF)was1136h?1.The Cu2O/SiC catalyst has a broad substrate scope and canbe used in Ullmann‐type C–O cross‐coupling reactions of aryl halides and phenols bearing a varietyof different substituents.The catalyst also showed high activity in the Ullmann‐type C–Scross‐coupling of thiophenol with iodobenzene and substituted iodobenzenes;a TOF of1186h?1was achieved.The recyclability of the Cu2O/SiC catalyst in the O‐arylation of phenol with iodobenzenewas investigated under the optimum conditions.The yield decreased from97%to64%afterfive cycles.The main reason for the decrease in the catalyst activity is loss of the active component,i.e.,Cu2O.展开更多
We report herein the cationic polymerization of isobutylene(IB)under mild conditions is realized with a new binary initiation system generated by simply mixing a Lewis super acid Al(C_(6)F_(5))_(3) and a substituted p...We report herein the cationic polymerization of isobutylene(IB)under mild conditions is realized with a new binary initiation system generated by simply mixing a Lewis super acid Al(C_(6)F_(5))_(3) and a substituted phenol(RPhOH).Polymers with medium and/or high molecular weights(M_(W)=4.9×10^(4)-27.7×10^(4) g·mol^(-1))can be obtained in toluene and temperatures from-20℃to 0℃.NMR spectrum analysis and DFT sim ulation reveals the in situ generated acidic coordinating complex Ak(C_(6)F_(5))_(3)·RPhOH is the initiating active species,which fu rther tran sformed into the ion-pair[Al(C_(6)F_(5))_(3)ORPh]^(-)[PIB]^(+)of the active intermediates upon growing IB monomers where the counter anion[Al(C_(6)F_(5))_(3)R^(O)Ph]-coordinates to the macrocation via the phenoxy oxygen.The catalyst performances are the concert effects of the steric bulkiness and electronics of the counter anion on the coordinating strength to the macrocation,which is significant to the stability of the active species.展开更多
基金Supported by General Program of Natural Science Foundation of Sichuan Province(2024NSFSC0706)Program of Sichuan Administration of Traditional Chinese Medicine(25MSZX326)+1 种基金Research Initiation Fund for High-level Talents of Sichuan College of Traditional Chinese Medicine(24ZRBS05)School-level Project of Sichuan College of Traditional Chinese Medicine(24SD02).
文摘[Objectives]To investigate the anti-tumor molecular mechanism of acetylenic phenols against triple-negative breast cancer(TNBC)using network pharmacology and molecular docking approaches.[Methods]Based on team s previous in vitro activity screening,the most active acetylenic phenols were selected for further analysis.Genes associated with triple-negative breast cancer(TNBC)were retrieved from the GAD and OMIM databases.Using Cytoscape software,a compound-target-pathway interaction network was constructed to visualize the relationships between the acetylenic phenols,their potential targets,and related pathways.Functional enrichment analysis of GO terms and KEGG pathways was performed using the DAVID database to identify key signaling mechanisms.Furthermore,molecular docking was conducted to evaluate the binding interactions between the acetylenic phenols and the potential core targets.[Results]Acetylenic phenols exhibit potential anticancer effects by modulating multiple signaling pathways,including the PI3K-Akt pathway,cell cycle pathway,and breast cancer pathway,which are closely associated with the pathophysiological processes of triple-negative breast cancer(TNBC)such as cell proliferation,apoptosis,and cell cycle regulation.Molecular docking results indicated that acetylenic phenols bind effectively to their targets via hydrogen bonding,hydrophobic interactions,andπ-stacking,indicating strong binding affinity.[Conclusions]Acetylenic phenols exert anti-TNBC effects by modulating key targets,including EGFR,RAF1,ESR1,CHEK1,and CDC25C,and influencing associated signaling pathways.These findings reveal the molecular mechanism underlying their anti-TNBC activity and provide a theoretical foundation for the potential application of acetylenic phenols in TNBC treatment.
基金National Key Technology R&D Program of China (Grant No.2007BAI27B05).
文摘Four series of derivatives of vanillin,anisaldehyde,genistein and aloe emodin were prepared.The single crystal of (E)-1-(5-(4-methoxyphenyl)-3-(4-methoxystyryl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone,which was synthesized from vanillin, was obtained by spontaneous evaporation method.All the compounds were tested for the tyrosinase inhibitory activities.The results demonstrated that the IC_(50)values of vanillin,anisaldehyde,genistein and aloe emodin against mushroom tyrosinase activity are 68,49,343 and 160μM,respectively.Among the twelve derivatives,(E)-1-(5-(4-methoxyphenyl)-3-(4-methoxystyryl)-4,5- dihydro-1H-pyrazol-1-yl)ethanone from vanillin and 4,5-dimethoxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid from aloe emodin showed good inhibition against the tyrosinase with IC_(50)values of 18μM and 21μM,respectively.
基金Supported by Agricultural Science and Technology Innovation Fund Project of Hunan Province(2022CX87)Huaihua Municipal Institute of Science and Technology Cooperation Project(2022N1203)Science and Technology Talent Lifting Project of Hunan Province—Training Plan for Young and Middle-aged Scholars(2023TJ-Z01)。
文摘Polyphenols were obtained from the natural dried Lonicerae flos by ultrasound-assisted extraction with ethanol as the solvent.Single factor experiment and response surface methodology were employed to optimize the extraction conditions.Ultra-performance liquid chromatrography(UPLC)-tandem mass spectrometry(MS/MS)was employed to identify polyphenols based on the plant widely targeted metabolomics database in a qualitative and quantitative manner.The results showed that the optimal extraction conditions for total phenols from Lonicerae flos were ultrasound-assisted extraction with a solid-to-liquid ratio of 10∶1 g/mL and 57%ethanol at 70 W and 60°C for 11 min.The yield of total phenols extracted under the optimal conditions reached 71.08 mg/g.The phenols in Lonicerae flos were mainly chlorogenic acid isomers,and the flavonoids were mainly nobiletin,galuteolin,and homoarbutin.
基金financially supported by Department of Biochemistry,Faculty of Agriculture.Cario University,and Food Technology Research Institute(FTRI)
文摘Objective:To investigate the changes in total phenols,flavonoids,tannins,vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties.Methods: The changes in total phenols,total ilavonoids,tannins,phenolic acids compounds,flavonoid components,vitamin E,P-carotene and antioxidant activity during soaking of sorghum grains were determined.Results:Total phenols,total flavonoids,tannins,vitamin E,P-carotene and antioxidant activity in raw sorghum were ranged from 109.21 to 116.70,45.91 to 54.69,1.39 to 21.79 mg/100 g,1.74 to 5.25,0.54 to 1.19 mg/kg and 21.72%to 27.69%and 25.29%to 31.97%,respectively. The above measured compounds were significantly decreased after soaking.p-Hydroxybenzoic acid,vanillic acid,syringic acid and cinnamic acid represent the major phenolic acids in Dorado variety.While ferulic acid,p-coumaric acid,gallic acid and caffeic acid represent the major phenolic acids in Shandaweel-6.On the other hand,protocatechuic acid represents the major phenolic acids in Giza-15.Regarding flavonoids components,Dorado was the highest variety in kampferol and naringenin while Shandaweel-6 was the highest variety in luteolin, apigenin,hypersoid,quercelin and christen.Finally,Giza-15 was the highest variety in catechin. Phenolic acids,flavonoid compounds and antioxidant activities were decreased after soaking. Conclusions:Sorghum varieties have moderate quantities from total phenols,total flavonoids, tannins,phenolic acids compounds,flavonoid components,vitamin E,P-carotene and antioxidant activity which decreased after soaking.
基金supported by "13115" Science and Tech-nology Innovation Programme of Shaanxi Province,China (2007ZDKG-09)the National Agricultural Industrial Technology System Foundation of China(Z225020901)Young Academic Backbone Scientific Research Program of Northwest A&F University,China (01140303)
文摘This study was conducted to determine the effect of cover crop inter-row in vineyard on main mono-phenol content of grape berry and wine. Three such cover crops, two perennial legumes (white clover and alfalfa) and a perennial gramineous grass (tall fescue) were sown in vineyard. The main phenolic compounds of mature grape berry and wines vinified under the same conditions were extracted with ethyl acetate and diethyl ether and analyzed by high- performance liquid chromatography (HPLC) by comparing to soil tillage. A total of ten phenolic compounds were identified and quantified in the different grape berry and wines, including nonflavonoids (hydroxybenzoic and hydroxycinnamic acids) and flavonoids (flavanols and flavonols). The concentration of flavonoid compounds (409.43 to 538.63 mg kg^-1 and 56.16 to 81.30 mg L^-1) was higher than nonflavonoids (76.91 to 98.85 mg kg^-1 and 30.65 to 41.22 mg L^-1) for Cabernet Sauvignon grape and wine under different treatments, respectively. In the flavonoid phenolics, Catechin was the most abundant in the different grapes and wines, accounting for 74.94 to 79.70% and 48.60 to 50.62% of total nonanthocyanin phenolics quantified, respectively. Compared to soil tillage, the sward treatments showed a higher content of main mono-phenol and total nonanthocyanin phenolics in grapes and wines. There were significant differences between two cover crop treatments (tall fescue and white clover) and soil tillage for the content of benzoic acid, salicylic acid, caffeic acid, catechin, and total phenolics in the grape berry (P 〈 0.05 or P〈0.01). The wine from tall fescue cover crop had the highest gallic acid, caffeic acid and catechin. Cover crop system increased the total nonanthocyanin phenolics of grapes and wines in order of the four treatments: tall fescue, white clover, alfalfa, and soil tillage (control). Cover crop in vineyard increased total phenols of grape berry and wine, and thus improved the quality of wine evidently.
基金supported by the National Key R&D Program of China (No:2017YFC0210000)the Ministry of Science and Technology of China (No:2016YFC0202001).
文摘Qualitative and quantitative analyses of derivatized phenols in Beijing and in Xinglong were performed from 2016 to 2017 using gas chromatography-mass spectrometry.The results showed substantially more severe pollution in Beijing.Of the 14 compounds detected,the total average concentration was 100 ng/m^3 in Beijing,compared with 11.6 ng/m^3 in Xinglong.More specifically,concentration of nitro-aromatic compounds(NACs)(81.9 ng/m^3 in Beijing and 8.49 ng/m^3 in Xinglong) was the highest,followed by aromatic acids(14.6 ng/m^3 in Beijing and 2.42 ng/m^3 in Xinglong) and aromatic aldehydes(3.62 ng/m^3 in Beijing and 0.681 ng/m^3 in Xinglong).In terms of seasonal variation,the highest concentrations were found for 4-nitrocatechol in winter in Beijing(79.1±63.9 ng/m^3) and 4-nitrophenol in winter in Xinglong(9.72±8.94 ng/m^3).The analysis also revealed diurnal variations across different seasons.Most compounds presented higher concentrations at night in winter because of the decreased boundary layer height and increased heating intensity.While some presented higher levels during the day,which attributed to the photo-oxidation process for summer and more biomass burning activities for autumn.Higher concentrations appeared in winter and autumn than in spring and summer,which resulted from more coal combustions and adverse meteorological conditions.The significant correlations among NACs indicated similar sources of pollution.Higher correlations presented within each subgroup than those between the subgroups.Good correlations between levoglucosan and nitrophenols,nitrocatechols,nitro salicylic acids,with correlation coefficients(r) of 0.66,0.69 and 0.69,respectively,indicating an important role of biomass burning among primary sources.
基金supported by the National Basic Research(973)Program of China(No.2014CB441102)the National Natural Science Foundation of China(No.21177139)
文摘Brominated phenols (BPs), a widely used group of emerging flame retardants, are important environmental contaminants and exhibit endocrine disrupting potential. Method for simultaneous determination of tetrabromobisphenol A (TBBPA), tribromophenol (TBP), dibromophenols (DBPs) and monobromophenols (MBPs) in soils using gas chromatography-mass spectrometry analysis (GC/MS) was successfully developed. Cleanup methods for soil extracts including several solid-phase extraction cartridges and different elution solvents were compared and optimized. Florisil cartridge with dichloromethane as the elution reagent was selected for sample cleanup owing to its high and reproducible recoveries of the target analytes in soils. Derivatization conditions were tested and the optimal conditions were obtained with 20 μL silylation reagent at room temperature. The chromatographic separation was optimized with different columns and DB-XLB column was selected for its excellent separation of the analytes. The limits of detection for the target compounds were from 0.04 to 0.19 ng/g. Mean recoveries of the compounds from spiked soils exceeded 84% with a good reproducibility, excepting that the recovery of 2-bromophenol was relatively poor (lower than 55%) due to its instability. The developed method was applied to the determination of the BPs in the soils collected from e-waste sites. The contents of BPs in the soils were at ng/g levels with TBBPA and TBP the most frequently detected. To our knowledge, this is the first report for the simultaneous determination of TBBPA, TBP, DBPs and MBPs in soils.
文摘The changes of polyphenols in tobacco leaves during the flue-curing process and correlation analysis on some chemical components were studied. Leaf samples were taken from different tobacco-producing regions in Henan Province, China. The results indicated that the content of total phenols increased during the first 24 h of curing, and then decreased. It reached the lowest value at 72 h of curing and increased rapidly after that. The content of chlorogenic acid also increased during 0-24 h of curing. But the lowest point occurred at 60 or 72 h of curing and then it increased till the end of the curing process. The content of mtin generally increased with curing, and showed little fluctuations. The changes of PPO and POD activity were the opposite. Rutin was found to have a highly significant positive correlation with total sugar (r=0.822^**), but a highly significant negative correlation with starch, nicotine, and protein.
基金Project supported by the National Natural Science Fund. (Nos. E 85111 and 4890275)
文摘The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of organic phenols with montmorillonite, illite and kaolinite in seawater is monovalent anion exchage.(2) Their isotherms of stepwise exchage on clay surfaces belong to the Langmuir type or stepwise type.(3) The discovery of the"steric hindrance effects of stepwise exchange of organic phenols on clays surfaces", and revelation of an exchange mechanisrn diffeient from that in references are the greatest achieverments in this work.
基金supported by the"100"talent program of Zhejiang University to D.He under the Grant No.188020*194231701/008 and188020-193810201/102NSFC to Y.Sun under the Grant No.41372131
文摘A multiproxy approach including bulk organic carbon, δ^(13) C, lignin phenols, and lipid biomarker analyses were applied to characterize the source and composition of sedimentary organic matter in the head part of Three Gorges Reservoir. OM consisted of both natural(autochthonous and allochthonous) and anthropogenic inputs.The natural OM included input from vascular plants,especially non-woody angiosperms. The allochthonous input included plankton and microbial production, likely due to localized eutrophication. Anthropogenic inputs likely derived from petroleum input and/or urban activities.Other anthropogenic inputs were untreated sewage waste.These influences were concluded to be regionally specific point sources of pollution based on relative distributions and on the fact that molecular characteristics of sedimentary OM were not distributed smoothly along a gradient.
文摘Certain phenols and naphthols were nitrated regioselectively with Zn(NO)·6HO/TCT in acetonitrile as solvent at room temperature and short reaction time in good yields.The reaction condition was mild.TCT is a cheap and commercially available reagent.It performed as an acid catalyst in this transformation.
基金supported by the National Key R&D Program of China(2018YFB1501500)the 2115 Talent Development Program of China Agricultural University+3 种基金the National Natural Science Foundation of China(21903001)the Natural Science Foundation of Anhui Province(1908085QB58)the Chinese Universities Scientific Fund(2020TC116)the Research Innovation Fund for Graduate Students of CAU(2020XYZC05A)。
文摘Catalytic hydrodeoxygenation(HDO)of biomass-derived oxy-compounds to advanced hydrocarbon fuels usually requires bifunctional catalysts containing metals and acidic sites.The appropriate tuning of metal and/or acidic active sites at interfaces of bifunctional catalysts can significantly improve catalyst activity and product selectivity.Here,4-trifuoromethyl salicylic acid(TFMSA),as a hydrothermal stable organic acid,was employed to tailor the bifunctional interface of Ru/γ-Al_(2)O_(3)to enhance the catalytic performance on converting lignin-derived phenols to jet fuel range cycloalkanes.More than 80%phenol was converted into cyclohexane at 230°C for 1 h over Ru/γ-Al_(2)O_(3)modified by TFMSA,which was about three times higher than that over unmodified Ru/γ-Al_(2)O_(3).X-ray diffraction(XRD),Transmission electron microscope(TEM),H2 chemisorption,and energy dispersive X-ray spectroscopy(EDS)elemental mapping results indicated that Ru nanoparticles and TFMSA were well distributed onγ-Al_(2)O_(3),and a nanoscale intimacy between Ru and TFMSA was reached.Meanwhile,Fourier transform infrared spectroscopy after pyridine adsorption(Py-FT-IR)analysis proved that Brønsted acidic sites on the catalytic interfaces of TFMSA modified Ru/γ-Al_(2)O_(3)had been improved.Moreover,the kinetic and density functional theory(DFT)results suggested that the synergistic effects of adjacent Ru nanoparticles and acidic sites were crutial for promoting the rate-limiting conversion step of phenol HDO to cyclohexane.
文摘A single-drop liquid phase micro-extraction procedure using 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) was demonstrated for the sensitive determination of four phenols in water samples. Under the optimized conditions, the linear range of proposed method was excellent in the range of 0.5-100 μg·L^-1, the reproducibility (RSD, n=6) were in the range 5.4%-8.9% and detection limits (S/N=3) were 0.3, 0.3, 0.5 and 0.5 μg·L^-1 for 2, 4-dichlorophenol, 2-naphthol, 2-nitrophenol and 4-chlorophenol, respectively. The experimental results indicated that the effect of complex matrices natural water samples could be resolved with addition of sodium ethylene diamine tetracetate (EDTA) into the samples. Excellent spiked recoveries were achieved for these four phenols ranged from 86.2%-114.9 %. All these facts demonstrated that the proposed method with merits of low cost, simplicity and easy operating would be a competitive alternative procedure for the determination of such compounds at trace level.
文摘Nanocrystalline TiO_2 was used as an efficient and recyclable catalyst for the chemoselective trimethylsilylation of primary and less hindered secondary alcohols and phenols with hexamethyldisilazane(HMDS).All reactions were performed under mild and completely heterogeneous conditions in good to excellent yields.
基金this work by the research affair,University of Guilan,Rasht,Iran,
文摘A variety of alcohols and phenols are efficiently acetylated with acetic anhydride in the presence of a catalytic amount of V(HSO4)3 in solution and under solvent free conditions. Mild reaction conditions, high yields of the products, easy procedure and selective acetylation of alcohols and phenols in the presence of amines and thiols are the main advantages of this procedure.
基金the Six Kinds of Professional Elite Foundation of Jiangsu Province(No.07-A-024)the Natural Science Foundation of Jiangsu Education Department(No.08KJB 150002)the Natural Science Foundation of Huaihai Institute of Technology(No.Z2008024) for financial support
文摘A catalytic method was developed to synthesize substituted phenols from the corresponding aryl bromides and chlorides under mild conditions (yields = 34-92%). 4-Methoxylbenzyl alcohol was used as water surrogate and CuI/3,4,7,8-tetramethyl-1,10- phenanthroline was used as catalyst to achieve the C-O cross-coupling.
基金support from the Commission on Higher Education(CHE-RES-RG)
文摘Two alkyl phenols,namely,2,5-dimethoxy-3-undecylphenol(1) and 5-methoxy-3-undecylphenol(2),were isolated together with two known benzoquinones,5-O-methylembelin(3) and 2-dehydroxy-5-O-methylembelin(4) from the wood of Averrhoa carambola.Their structures were elucidated on the basis of spectroscopic methods(1D and 2D NMR).
基金supported by the National Natural Science Foundation of China (No. 81872585)the National Key Research and Development Program of China (No. 2016YFC1302700)。
文摘Phenols have been shown to influence the cellular proliferation and function of thyroid in experimental models. However, few human studies have investigated the association between phenol exposure and thyroid cancer, and the underlying mechanisms are also poorly understood. We conducted a case-control study by age- and sex-matching 143 thyroid cancer and 224 controls to investigate the associations between phenol exposures and the risk of thyroid cancer, and further to explore the mediating role of oxidative stress. We found that elevated urinary triclosan (TCS), bisphenol A (BPA) and bisphenol S (BPS) levels were associated with increased risk of thyroid cancer (all P for trends < 0.05), and the adjusted odds ratios (ORs) comparing the extreme exposure groups were 3.52 (95% confidence interval (CI):2.08, 5.95), 2.06 (95% CI: 1.06, 3.97) and 7.15 (95% CI: 3.12, 16.40), respectively. Positive associations were also observed between urinary TCS, BPA and BPS and three oxidative stress biomarkers measured by 8-hydroxy-2 -deoxyguanosine (8-OHdG), 8-iso-prostaglandin F(8-iso PGF) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), as well as between urinary 8-iso PGFand HNE-MA and the risk of thyroid cancer. Mediation analysis showed that urinary 8-iso PGFmediated 28.95%, 47.06% and 31.08% of the associations between TCS, BPA and BPS exposures and the risk of thyroid cancer, respectively (all P < 0.05). Our results suggest that exposure to TCS, BPA and BPS may be associated with increased risk of thyroid cancer and lipid peroxidation may be an intermediate mechanism. Further studies are warranted to confirm the findings.
基金supported by the National Natural Science Foundation of China (21203233,21473232,21403270)Youth Innovation Promotion Association,CAS (2013115)~~
文摘A Cu2O/SiC heterogeneous catalyst was prepared via a two‐step liquid‐phase method using diethyleneglycol as both the solvent and the reducing agent.The catalyst was characterized using X‐raydiffraction,X‐ray photoelectron spectroscopy,scanning electron microscopy(SEM),transmissionelectron microscopy(TEM),and H2temperature‐programmed reduction.All the results indicatethat Cu is present on the SiC support primarily as Cu2O.The SEM and TEM results show that cubicCu2O nanoparticles are uniformly dispersed on theβ‐SiC surface.The reaction conditions,namelythe temperature,reaction time,and amounts of base and catalyst used,for the Ullmann‐type C–Ocross‐coupling reaction were optimized.A model reaction was performed using iodobenzene(14.0mmol)and phenol(14.0mmol)with Cu2O/SiC(5wt%Cu)as the catalyst,Cs2CO3(1.0equiv.)as thebase,and tetrahydrofuran as the solvent at150°C for3h;a yield of97%was obtained and theturnover frequency(TOF)was1136h?1.The Cu2O/SiC catalyst has a broad substrate scope and canbe used in Ullmann‐type C–O cross‐coupling reactions of aryl halides and phenols bearing a varietyof different substituents.The catalyst also showed high activity in the Ullmann‐type C–Scross‐coupling of thiophenol with iodobenzene and substituted iodobenzenes;a TOF of1186h?1was achieved.The recyclability of the Cu2O/SiC catalyst in the O‐arylation of phenol with iodobenzenewas investigated under the optimum conditions.The yield decreased from97%to64%afterfive cycles.The main reason for the decrease in the catalyst activity is loss of the active component,i.e.,Cu2O.
基金financially supported by the National Natural Science Foundation of China(Nos.U21A20279 and 21774119)。
文摘We report herein the cationic polymerization of isobutylene(IB)under mild conditions is realized with a new binary initiation system generated by simply mixing a Lewis super acid Al(C_(6)F_(5))_(3) and a substituted phenol(RPhOH).Polymers with medium and/or high molecular weights(M_(W)=4.9×10^(4)-27.7×10^(4) g·mol^(-1))can be obtained in toluene and temperatures from-20℃to 0℃.NMR spectrum analysis and DFT sim ulation reveals the in situ generated acidic coordinating complex Ak(C_(6)F_(5))_(3)·RPhOH is the initiating active species,which fu rther tran sformed into the ion-pair[Al(C_(6)F_(5))_(3)ORPh]^(-)[PIB]^(+)of the active intermediates upon growing IB monomers where the counter anion[Al(C_(6)F_(5))_(3)R^(O)Ph]-coordinates to the macrocation via the phenoxy oxygen.The catalyst performances are the concert effects of the steric bulkiness and electronics of the counter anion on the coordinating strength to the macrocation,which is significant to the stability of the active species.