The phylogeny of the monal pheasants (Lophophorus) and their relationships to some species of the genera Tragopan,Pucrasia and Ithaginis were studied by comparing mitochondrial cytochrome b (cyt b) nucleotide sequence...The phylogeny of the monal pheasants (Lophophorus) and their relationships to some species of the genera Tragopan,Pucrasia and Ithaginis were studied by comparing mitochondrial cytochrome b (cyt b) nucleotide sequences.The molecular phylogenetic trees show that:①the genus Tragopan and the genus Pucrasia share a common ancestor which is the sister taxon of the ancestor of the genus Lophophorus;②the genus Lophophorus had evolved into two branches:One was the Sclaters Monal;the other included the Chinese Monal and the Himalayan Monal.Considering its molecular phylogeny,distribution patterns and morphological evidences,the genus Lophophorus might originate in the Hengduan mountains region of southwestern China.展开更多
We present a preliminary examination of the home range and habitat use of male Reeves's Pheasants (Syrmaticus reevesii) in an agricultural-forest plantation landscape on the Xianjuding Forest Farm, Hubei Province,...We present a preliminary examination of the home range and habitat use of male Reeves's Pheasants (Syrmaticus reevesii) in an agricultural-forest plantation landscape on the Xianjuding Forest Farm, Hubei Province, central China. Fieldwork was carried out from March to August in 2003. The home range of males averaged 33.17 ± 12.55 ha by MCP (minimum convex polygon) and 21.05 ± 5.61 ha by a 95% fixed kernel estimator. The core area by a 60% fixed kernel estimator was 3.92 ± 0.27 ha. We did not detect significant seasonal variations in home range, core area and movement in this farm. Chinese fir (Cunninghamia lanceolata) plantations were the dominant habitat type within the home ranges and core areas. The males used their habitat non-randomly in spring and summer, preferred the fir plantations and avoided broadleaf forests in both seasons. In addition, the males used shrubs less than were available in the spring. The vegetation structure of different habitats may be the leading factor affecting the use of the habitats.展开更多
Biodiversity has been subjected to increasing anthropogenic pressures.It is critical to understand the different processes that govern community assembly and species coexistence under biogeographic processes and anthr...Biodiversity has been subjected to increasing anthropogenic pressures.It is critical to understand the different processes that govern community assembly and species coexistence under biogeographic processes and anthropogenic events.Pheasants(Aves:Phasianidae)are highly threatened birds and China supports the richest pheasant species worldwide.Unravelling the spatial patterns and underlying factors associated with multidimensional biodiversity of species richness(SR),functional diversity(FD),and phylogenetic diversity(PD)of pheasants in China is helpful to understand not only the processes that govern pheasant community assembly and species coexistence,but also pheasant biodiversity conservation.We used a total of 45 pheasant species in China and analyzed the SR,FD,PD,and functional and phylogenetic structures by integrating species distribution maps,functional traits and phylogenies based on 50 km×50 km grid cells.We further used simultaneous autoregressive(SAR)models to explore the factors that determined these patterns.The southern Qinghai-Tibetan Plateau(QTP),Hengduan Mountains,southwestern Mountains,the east of the Qilian Mountains,the Qinling,southern China displayed higher SR,FD,and PD,which were determined by elevation,habitat heterogeneity,temperature seasonality,and vegetation cover.Elevation primarily determined the functional and phylogenetic structures of the pheasant communities.Assemblages in the highlands were marked by functional and phylogenetic clustering,particularly in the QTP,whereas the lowlands in eastern China comprised community overdispersion.Clustered pheasant assemblages were composed of young lineages.Patterns of functional and phylogenetic structures and richness-controlled functional and phylogenetic diversity differed between regions,suggesting that phylogenetic structures are not a good proxy for identifying functional structures.We revealed the significant role of elevation in pheasant community assemblages in China.Highlands interacted with community clustering,whereas lowlands interacted with overdispersion,supporting the environmental filtering hypothesis.Biogeographical drivers other than anthropogenic factor determined biodiversity of pheasants at the present scale of China.This study provides complementary background resources for multi-dimensional pheasant biodiversity and provides insights into avian biodiversity patterns in China.展开更多
Understanding speciation has long been a fundamental goal of evolutionary biology.It is widely accepted that speciation requires an interruption of gene flow to generate strong reproductive isolation between species.T...Understanding speciation has long been a fundamental goal of evolutionary biology.It is widely accepted that speciation requires an interruption of gene flow to generate strong reproductive isolation between species.The mechanism of how speciation in sexually dichromatic species operates in the face of gene flow remains an open question.Two species in the genus Chrysolophus,the Golden Pheasant(C.pictus)and Lady Amherst’s Pheasant(C.amherstiae),both of which exhibit significant plumage dichromatism,are currently parapatric in southwestern China with several hybrid recordings in field.In this study,we estimated the pattern of gene flow during the speciation of the two pheasants using the Approximate Bayesian Computation(ABC)method based on data from multiple genes.Using a newly assembled de novo genome of Lady Amherst’s Pheasant and resequencing of widely distributed individuals,we reconstructed the demographic history of the two pheasants by the PSMC(pairwise sequentially Markovian coalescent)method.The results provide clear evidence that the gene flow between the two pheasants was consistent with the predictions of the isolation with migration model during divergence,indicating that there was long-term gene flow after the initial divergence(ca.2.2 million years ago).The data further support the occurrence of secondary contact between the parapatric populations since around 30 kya with recurrent gene flow to the present,a pattern that may have been induced by the population expansion of the Golden Pheasant in the late Pleistocene.The results of the study support the scenario of speciation between the Golden Pheasant and Lady Amherst’s Pheasant with cycles of mixing-isolation-mixing,possibly due to the dynamics of geographical context in the late Pleistocene.The two species provide a good research system as an evolutionary model for testing reinforcement selection in speciation.展开更多
The Himalayan monal(Lophophorus impejanus),Nepal’s national bird,is a protected species facing significant conservation challenges.Understanding the distribution and habitat preferences of the Himalayan monal(HM)is c...The Himalayan monal(Lophophorus impejanus),Nepal’s national bird,is a protected species facing significant conservation challenges.Understanding the distribution and habitat preferences of the Himalayan monal(HM)is crucial for its conservation.This study was conducted in the Langtang National Park(LNP),Nepal using the route census method during both winter(November/December 2022)and summer(June 2023)seasons to examine the seasonal variation in HM’s elevational distribution and habitat preference.Further,we assessed their conservation threats by conducting a semi-structured questionnaire survey with the local residents.During the winter period,the HMs preferred grassland habitats,while in the summer,their preference shifted to shrubland and barren area.HM abundance was negatively associated with the Normalized Differential Vegetation Index(NDVI)and the shortest distance from the survey trails in the winter.The HMs actively avoided areas with high anthropogenic pressure.In the summer,they showed a wider elevational range up to 4400 m above sea level(a.s.l.),with a higher sighting frequency between 3600 and 3900 m a.s.l.The questionnaire survey of the local residents revealed that anthropogenic pressure such as poaching and free-ranging livestock grazing are the major threats to the species in the study area.This study provides valuable insight into the complex habitat preferences and critical threats faced by the HMs in LNP and underscores the urgent need for targeted conservation action.展开更多
Illegal hunting and trafficking of wildlife and their derivatives extort unprecedented population decline of relatively many species pushing them towards extinction.Notwithstanding contemporary counteracting intervent...Illegal hunting and trafficking of wildlife and their derivatives extort unprecedented population decline of relatively many species pushing them towards extinction.Notwithstanding contemporary counteracting interventions at international,regional,national and local levels,wildlife farming is advocated as an alternative approach to minimize pressure on wild populations.For wildlife farming to be an effective conservation tool,the integration of wildlife forensics is inevitable to allow distinction between captive-bred and wild-caught species.To this end,we analyzed methylation rates of skeletal muscle samples(pectoralis major,triceps brachii,gastrocnemius,biceps femoris,and neck muscles)from 60 captive-bred and 30 wild-caught Common Pheasant.A total of 13,507 differentially methylated regions were identified between five wild-caught and five captive-bred individuals through whole-genome methylation sequencing(WGBS).Based on the selected five methylation sites,LOC116231076,LOC116242223,ATAD2B,EGFL6,and HS2ST,quantitative detection technique was developed using methylation-sensitive high-resolution melting curve(MS-HRM)to measure methylation rates.The results showed significant differences in methylation rates at all differential sites between wild-caught and captive-bred individuals(|t|=0.67–33.10,P=0.000–0.042).The discrimination accuracy rate of each locus was highest in the gastrocnemius muscle and lowest in the neck muscle.The discrimination accuracy rate on LOC116231076,LOC116242223,ATAD2B,EGFL6,and HS2ST methylation sites for gastrocnemius muscle was 64.98%,100.00%,68.54%,63.79%,and 63.70%,respectively;and for neck muscle it was 67.42%,68.06%,83.61%,65.04%,and68.85%,respectively.The united discrimination accuracy rate of the five loci were 100.00%for gastrocnemius muscle,99.78%for biceps femoris muscle,97.52%for pectoralis major muscle,93.96%for triceps brachii muscle,and 91.63%for neck muscle,respectively.The panel also revealed excellent repeatability,reproducibility,sensitivity and universality to mammals and avian species.This study establishes an effective,accurate and low-cost identification technology for the identification of wild and farmed Common Pheasant,and also provides a reference for the development of identification methods for other species.展开更多
Avian genomes exhibit compact organization and remarkable chromosomal stability.However,the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorl...Avian genomes exhibit compact organization and remarkable chromosomal stability.However,the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored.This study generated a diploid genome assembly for the golden pheasant(Chrysolophus pictus),a species distinguished by the vibrant plumage of males.Each haploid genome assembly included complete chromosomalmodels,incorporatingall microchromosomes.Analysis revealed extensive tandem amplification of immune-related genes across the smallest microchromosomes(dot chromosomes),with an average copy number of 54.Structural variation between the haploid genomes was primarily shaped by large insertions and deletions(indels),with minimal contributions from inversions or duplications.Approximately 28%of these large indels were associated with recent insertions of transposable elements,despite their typically low activity in bird genomes.Evidence for significant effects of transposable elements on gene expression was minimal.Evolutionary strata on the sex chromosomes were identified,along with a drastic rearrangement of the W chromosome.These analyses of the high-quality diploid genome of the golden pheasant provide valuable insights into the evolutionary patterns of structural variation in avian genomes.展开更多
We modeled foraging habitats of Hume’s Pheasant (Syrmaticus humiae) on a macro-habitat level using ArcGIS in an attempt to provide scientific reference for management and restoration of habitats. Field work was condu...We modeled foraging habitats of Hume’s Pheasant (Syrmaticus humiae) on a macro-habitat level using ArcGIS in an attempt to provide scientific reference for management and restoration of habitats. Field work was conducted from March to April in 2006 and 2008, and from October to November in 2005 and 2008 in Dazhong Mountain, Yunnan Province, southwestern China. The selection of ecological factors was estimated by means of a resource selection index, distance analysis and the method of hierarchical habitat selection. The foraging habitat patches were modeled spatially by ArcGIS. The results show that actual and potential foraging patches overlapped considerably in spring and autumn. The number and total areas of patches in the autumn were smaller than those in the spring. The minimum and average areas of patches in the autumn were larger than those in the spring, while the maximum areas of actual and potential foraging patches in the autumn were equal to those in the spring. Similarity in the selection for survival and safety consideration in both seasons was the main strategy for landscape factors of habitats by Hume’s Pheasant, while seasonal difference in selecting a landscape matrix was their secondary strategy, affecting landscape factors in the habitat. Changes of foraging patches in both seasons reflect a difference of resources requirement by the bird. Fragmentation and miniaturization of foraging patches would result in the formation of a meta-population of Hume’s Pheasant.展开更多
This study aimed to discuss the energy budget of Elliot's pheasant Syrmaticus ellioti in different seasons, with life and health, good growth and normal digestion of Elliot's pheasant as the tested objects, Th...This study aimed to discuss the energy budget of Elliot's pheasant Syrmaticus ellioti in different seasons, with life and health, good growth and normal digestion of Elliot's pheasant as the tested objects, The energy budget of Elliot's pheasant was measured by daily collection of the trial pheasants' excrement in the biological garden of Guangxi Normal University from March 2011 to February 2012. The results showed that the gross energy consumption, metabolic energy and excrement energy varied by season, increasing as temperature decreased. There was significant difference in gross energy consumption, metabolic energy, excrement energy between adults and nonages. There was also a trend that food digestibility of pheasants increases as temperature increases. In the same season, the food digestibility of adults was better than that of nonages. Throughout spring, summer, autumn and winter, the metabolic energy of 4-year adults were 305.77±13.40 kJ/d, 263.67±11.89 kJ/d, 357.23±25.49 kJ/d and 403.12±24.91 kJ/d, respectively, and the nonages were 284.86±17.22 kJ/d, 284. 66±15.16 kJ/d, 402. 26±31.46 kJ/d and 420. 30±31.98 kJ/d, respectively. The minimum metabolic energies were 247.65±21.81 g, 265.86±26.53 g, respectively for each group, detected between 4-year adults and 1-year nonages. Further study is needed to determine whether 29.6 C is the optimal temperature for the Elliot's pheasant.展开更多
Galliformes are often difficult to count adequately in their natural habitats due to low detectability of them.In the present study,we confirm availability of feather-count and feces-count as two useful field techniqu...Galliformes are often difficult to count adequately in their natural habitats due to low detectability of them.In the present study,we confirm availability of feather-count and feces-count as two useful field techniques to estimate the relative abundance of eared-pheasants(Crossoptilon spp.).The former is suitable to forest environments during the post-incubation period,whereas the latter is best in areas with dry climate conditions during the fall-winter season.With the advantages of reduced survey effort and high repeatability,the two techniques are potentially applicable to other Galliform species in habitat selection studies and long-term population monitoring.展开更多
The Blue-eared Pheasant (Crossoptilon auritum) is an important bird species,endemic to China and is ranked as a second grade key protected wildlife species in China.These birds are only found in the mountainous region...The Blue-eared Pheasant (Crossoptilon auritum) is an important bird species,endemic to China and is ranked as a second grade key protected wildlife species in China.These birds are only found in the mountainous regions of Qinghai,Gansu and Sichuan provinces and the Ningxia Hui Autonomous Region.In order to understand systematically the existing information on the biology of the Blue-eared Pheasant,we provide updated information on its habitat,activity,nest-site features,breeding biology,feeding habits,population status and conservation of this pheasant by integrating published data with the information from our field surveys,conducted from 2006 to 2008 in the Gaihai-zecha National Nature Reserve,Gansu.展开更多
The Hainan Peacock Pheasant (Polyplectron katsumatae),the smallest allied species of somber forest peacock pheasants among the taxa of Polyplectron spp.,is a rare tropical forest bird endemic to China,and distributed ...The Hainan Peacock Pheasant (Polyplectron katsumatae),the smallest allied species of somber forest peacock pheasants among the taxa of Polyplectron spp.,is a rare tropical forest bird endemic to China,and distributed only in the mountainous region of central and southwestern Hainan Island dominated by evergreen broadleaf forests.By integrating references and unpublished data based on our field surveys,we presented information on species status,distribution and population,habitat and home range,breeding ecology and conservation of the Hainan Peacock Pheasant.Future investigation should focus on its life history traits in relation to vulnerability.Considering its limited distribution and small population size,it has recently been recognized as "Endangered" by the IUCN Red List to prevent loss of this island endemic.展开更多
This study aimed to discuss the energy budget of Elliot’s pheasant Syrmaticus ellioti in different seasons,with life and health,good growth and normal digestion of Elliot’s pheasant as the tested objects,The energy ...This study aimed to discuss the energy budget of Elliot’s pheasant Syrmaticus ellioti in different seasons,with life and health,good growth and normal digestion of Elliot’s pheasant as the tested objects,The energy budget of Elliot’s pheasant was measured by daily collection of the trial pheasants’excrement in the biological garden of Guangxi Normal University from March 2011 to February 2012.The results showed that the gross energy consumption,metabolic energy and excrement energy varied by season,increasing as temperature decreased.There was significant difference in gross energy consumption,metabolic energy,excrement energy between adults and nonages.There was also a trend that food digestibility of pheasants increases as temperature increases.In the same season,the food digestibility of adults was better than that of nonages.Throughout spring,summer,autumn and winter,the metabolic energy of 4-year adults were 305.77±13.40 kJ/d,263.67±11.89 kJ/d,357.23±25.49 kJ/d and 403.12±24.91 kJ/d,respectively,and the nonages were 284.86±17.22 kJ/d,284.66±15.16 kJ/d,402.26±31.46 kJ/d and 420.30±31.98 kJ/d,respectively.The minimum metabolic energies were 247.65±21.81 g,265.86±26.53 g,respectively for each group,detected between 4-year adults and 1-year nonages.Further study is needed to determine whether 29.6 C is the optimal temperature for the Elliot’s pheasant.展开更多
The polymerase chain reaction combined with direct sequencing was employed to deduce the variety of the grey-rumped pheasant populations in China. Totally 1079 basepair sequences of mitochondrial DNA (mtDNA) control...The polymerase chain reaction combined with direct sequencing was employed to deduce the variety of the grey-rumped pheasant populations in China. Totally 1079 basepair sequences of mitochondrial DNA (mtDNA) control-region gene were analyzed from 121 grey-rumpod pheasants obtained from 13 Chinese lo- calities, 76 variable sites resulted in 91 haplotypes. These populations possessed a high level of genetic diversity, indicating that during their evolution effective population size and polymorphism were not reduced by climatic fluctuations in the Pleistocene ice ages. Phylogenetie analysis indicates that all populations were clustered into two groups, western and eastern. The degree of population differentiation presumably results from a low gene flow ( N, = 0. 33, F,, = 0. 60, P 〈 0. 001 ) between the two groups, and the divergence occurred in the years (2.1 ×10^5 - 2.2 × 105 ). The genetic structure of grey-rumped pheasants in China ap- pears to be the result of the uplift of Qinghai-Tibet Plateau, the existence of Qinling Mountains and Liupan Mountains and cyclical climatic oscillations during the late Pleistocene.展开更多
The winter diet and morphological structure of the gastrointestinal tract of the Golden Pheasant(Chrysolophus pictus) was investigated in the Qinling Mountains,Shaanxi Province in 2002/2003.Individual food items in cr...The winter diet and morphological structure of the gastrointestinal tract of the Golden Pheasant(Chrysolophus pictus) was investigated in the Qinling Mountains,Shaanxi Province in 2002/2003.Individual food items in crops were identified by species,where possible,using standard taxonomic methods.The Golden Pheasant consumes exclusively vegetarian foods in the winter,of at least 14 plant species,such as crops and other vegetable species.The digestive tract of the Golden Pheasant is composed of an oesophagus,a stomach,a relatively long intestine measuring 3.4 × standard body length,two fully-developed caeca and a relatively short colon,typical for herbivorous birds.Pebbles of different sizes(0.5-3 mm in diameter) were very frequent in the gizzard.The average dry weight of the pebbles was 10.4±2.5 g and was positively correlated with the weight of digesta in the gizzard(Pearson r = 0.747,p < 0.01,n = 37).The mucosa surface pH of the digestive tract of the Golden Pheasant was slightly acidic,but higher in the crop and gizzard.展开更多
Sex-biased dispersal,in which individuals of one sex tend to disperse and breed at a greater distance from their natal site than individuals of the opposite sex,appears to be common in vertebrate organisms and is very...Sex-biased dispersal,in which individuals of one sex tend to disperse and breed at a greater distance from their natal site than individuals of the opposite sex,appears to be common in vertebrate organisms and is very important to population structures and dynamics.Many studies have documented the dispersal patterns of monogamous birds; however,observations and data are few for polygynous birds.In our study,we report on the indication of sex-biased dispersal in Elliot's Pheasant (Syrmaticus ellioti),a vulnerable species endemic to China,using polymorphic DNA microsatellite loci (105 individual birds and seven loci) and mitochondrial DNA control-region sequences (63 birds).Contrary to the traditional concept that males are the more philopatric sex and females the more dispersing sex in birds,all the genetic information extracted from the two markers suggests that male-biased dispersal is predominant in Elliot's Pheasant.We argue that polygynous species in Galliformes without lekking behavior are more likely to exhibit male-biased dispersal patterns,consistent with the expected results based on the polygynous mating system of Elliot's Pheasant.展开更多
Carotenoids, which generate yellow, orange, and red colors, are crucial pigments in avian plumage. Investigations into genes associated with carotenoid- based coloration in avian species are important; however, such r...Carotenoids, which generate yellow, orange, and red colors, are crucial pigments in avian plumage. Investigations into genes associated with carotenoid- based coloration in avian species are important; however, such research is difficult because carotenoids cannot be synthetized in vertebrates as they are only derived from dietary sources. Here, the golden pheasant (Chrysolophus pictus) was used as a model in analysis of candidate gene expression profiles implicated in carotenoid binding and deposition. Using mass and Raman spectrometry to confirm the presence of carotenoids in golden pheasant feathers, we found C40H540 and C40H5602 in feathers with yellow to red colors, and in the rachis of iridescent feathers. The global gene expression profiles in golden pheasant skins were analyzed by RNA-seq and all six carotenoid binding candidate genes sequenced were studied by real- time PCR. STAR4, GSTA2, Scarbl, and APOD in feather follicles showed different expressions in red breast and orange nape feathers compared with that of iridescent mantle feathers. Further comparison of golden pheasant yellow rump and Lady Amherst's pheasant (Chrysolophus amherstiae) white nape feathers suggested that GSTA2 and APOD played a potential role in carotenoid-based coloration in golden pheasant.展开更多
文摘The phylogeny of the monal pheasants (Lophophorus) and their relationships to some species of the genera Tragopan,Pucrasia and Ithaginis were studied by comparing mitochondrial cytochrome b (cyt b) nucleotide sequences.The molecular phylogenetic trees show that:①the genus Tragopan and the genus Pucrasia share a common ancestor which is the sister taxon of the ancestor of the genus Lophophorus;②the genus Lophophorus had evolved into two branches:One was the Sclaters Monal;the other included the Chinese Monal and the Himalayan Monal.Considering its molecular phylogeny,distribution patterns and morphological evidences,the genus Lophophorus might originate in the Hengduan mountains region of southwestern China.
基金the Forestry Commonweal Programs of the Ministry of Science&Technology of China(No.200904003)the National Natural Science Foundation of China(No.30800103)
文摘We present a preliminary examination of the home range and habitat use of male Reeves's Pheasants (Syrmaticus reevesii) in an agricultural-forest plantation landscape on the Xianjuding Forest Farm, Hubei Province, central China. Fieldwork was carried out from March to August in 2003. The home range of males averaged 33.17 ± 12.55 ha by MCP (minimum convex polygon) and 21.05 ± 5.61 ha by a 95% fixed kernel estimator. The core area by a 60% fixed kernel estimator was 3.92 ± 0.27 ha. We did not detect significant seasonal variations in home range, core area and movement in this farm. Chinese fir (Cunninghamia lanceolata) plantations were the dominant habitat type within the home ranges and core areas. The males used their habitat non-randomly in spring and summer, preferred the fir plantations and avoided broadleaf forests in both seasons. In addition, the males used shrubs less than were available in the spring. The vegetation structure of different habitats may be the leading factor affecting the use of the habitats.
基金supported by grants from the National Natural Science Foundation of China(No.31872240)the National Key R&D Plan Project(No.2016YFC0503206)。
文摘Biodiversity has been subjected to increasing anthropogenic pressures.It is critical to understand the different processes that govern community assembly and species coexistence under biogeographic processes and anthropogenic events.Pheasants(Aves:Phasianidae)are highly threatened birds and China supports the richest pheasant species worldwide.Unravelling the spatial patterns and underlying factors associated with multidimensional biodiversity of species richness(SR),functional diversity(FD),and phylogenetic diversity(PD)of pheasants in China is helpful to understand not only the processes that govern pheasant community assembly and species coexistence,but also pheasant biodiversity conservation.We used a total of 45 pheasant species in China and analyzed the SR,FD,PD,and functional and phylogenetic structures by integrating species distribution maps,functional traits and phylogenies based on 50 km×50 km grid cells.We further used simultaneous autoregressive(SAR)models to explore the factors that determined these patterns.The southern Qinghai-Tibetan Plateau(QTP),Hengduan Mountains,southwestern Mountains,the east of the Qilian Mountains,the Qinling,southern China displayed higher SR,FD,and PD,which were determined by elevation,habitat heterogeneity,temperature seasonality,and vegetation cover.Elevation primarily determined the functional and phylogenetic structures of the pheasant communities.Assemblages in the highlands were marked by functional and phylogenetic clustering,particularly in the QTP,whereas the lowlands in eastern China comprised community overdispersion.Clustered pheasant assemblages were composed of young lineages.Patterns of functional and phylogenetic structures and richness-controlled functional and phylogenetic diversity differed between regions,suggesting that phylogenetic structures are not a good proxy for identifying functional structures.We revealed the significant role of elevation in pheasant community assemblages in China.Highlands interacted with community clustering,whereas lowlands interacted with overdispersion,supporting the environmental filtering hypothesis.Biogeographical drivers other than anthropogenic factor determined biodiversity of pheasants at the present scale of China.This study provides complementary background resources for multi-dimensional pheasant biodiversity and provides insights into avian biodiversity patterns in China.
基金supported by the National Natural Science Foundation of China(No.31471987)approved by College of Life Sciences,Beijing Normal University:No.CLSEAW-2013-007。
文摘Understanding speciation has long been a fundamental goal of evolutionary biology.It is widely accepted that speciation requires an interruption of gene flow to generate strong reproductive isolation between species.The mechanism of how speciation in sexually dichromatic species operates in the face of gene flow remains an open question.Two species in the genus Chrysolophus,the Golden Pheasant(C.pictus)and Lady Amherst’s Pheasant(C.amherstiae),both of which exhibit significant plumage dichromatism,are currently parapatric in southwestern China with several hybrid recordings in field.In this study,we estimated the pattern of gene flow during the speciation of the two pheasants using the Approximate Bayesian Computation(ABC)method based on data from multiple genes.Using a newly assembled de novo genome of Lady Amherst’s Pheasant and resequencing of widely distributed individuals,we reconstructed the demographic history of the two pheasants by the PSMC(pairwise sequentially Markovian coalescent)method.The results provide clear evidence that the gene flow between the two pheasants was consistent with the predictions of the isolation with migration model during divergence,indicating that there was long-term gene flow after the initial divergence(ca.2.2 million years ago).The data further support the occurrence of secondary contact between the parapatric populations since around 30 kya with recurrent gene flow to the present,a pattern that may have been induced by the population expansion of the Golden Pheasant in the late Pleistocene.The results of the study support the scenario of speciation between the Golden Pheasant and Lady Amherst’s Pheasant with cycles of mixing-isolation-mixing,possibly due to the dynamics of geographical context in the late Pleistocene.The two species provide a good research system as an evolutionary model for testing reinforcement selection in speciation.
基金an MSc thesis research grant from the Zoological Society of London(ZSL)Nepal.RCK’s effort was supported in part by the Office of Research Infrastructure Programs(ORIP)of the National Institutes of Health through grant number P51OD010425 to the Washington National Primate Research Center,USA。
文摘The Himalayan monal(Lophophorus impejanus),Nepal’s national bird,is a protected species facing significant conservation challenges.Understanding the distribution and habitat preferences of the Himalayan monal(HM)is crucial for its conservation.This study was conducted in the Langtang National Park(LNP),Nepal using the route census method during both winter(November/December 2022)and summer(June 2023)seasons to examine the seasonal variation in HM’s elevational distribution and habitat preference.Further,we assessed their conservation threats by conducting a semi-structured questionnaire survey with the local residents.During the winter period,the HMs preferred grassland habitats,while in the summer,their preference shifted to shrubland and barren area.HM abundance was negatively associated with the Normalized Differential Vegetation Index(NDVI)and the shortest distance from the survey trails in the winter.The HMs actively avoided areas with high anthropogenic pressure.In the summer,they showed a wider elevational range up to 4400 m above sea level(a.s.l.),with a higher sighting frequency between 3600 and 3900 m a.s.l.The questionnaire survey of the local residents revealed that anthropogenic pressure such as poaching and free-ranging livestock grazing are the major threats to the species in the study area.This study provides valuable insight into the complex habitat preferences and critical threats faced by the HMs in LNP and underscores the urgent need for targeted conservation action.
基金supported by the Fundamental Research Funds for the Central Universities(2572020DR10)Project on the Investigation,Supervision and Industry Regulation of Rare and Endangered Species(2024)。
文摘Illegal hunting and trafficking of wildlife and their derivatives extort unprecedented population decline of relatively many species pushing them towards extinction.Notwithstanding contemporary counteracting interventions at international,regional,national and local levels,wildlife farming is advocated as an alternative approach to minimize pressure on wild populations.For wildlife farming to be an effective conservation tool,the integration of wildlife forensics is inevitable to allow distinction between captive-bred and wild-caught species.To this end,we analyzed methylation rates of skeletal muscle samples(pectoralis major,triceps brachii,gastrocnemius,biceps femoris,and neck muscles)from 60 captive-bred and 30 wild-caught Common Pheasant.A total of 13,507 differentially methylated regions were identified between five wild-caught and five captive-bred individuals through whole-genome methylation sequencing(WGBS).Based on the selected five methylation sites,LOC116231076,LOC116242223,ATAD2B,EGFL6,and HS2ST,quantitative detection technique was developed using methylation-sensitive high-resolution melting curve(MS-HRM)to measure methylation rates.The results showed significant differences in methylation rates at all differential sites between wild-caught and captive-bred individuals(|t|=0.67–33.10,P=0.000–0.042).The discrimination accuracy rate of each locus was highest in the gastrocnemius muscle and lowest in the neck muscle.The discrimination accuracy rate on LOC116231076,LOC116242223,ATAD2B,EGFL6,and HS2ST methylation sites for gastrocnemius muscle was 64.98%,100.00%,68.54%,63.79%,and 63.70%,respectively;and for neck muscle it was 67.42%,68.06%,83.61%,65.04%,and68.85%,respectively.The united discrimination accuracy rate of the five loci were 100.00%for gastrocnemius muscle,99.78%for biceps femoris muscle,97.52%for pectoralis major muscle,93.96%for triceps brachii muscle,and 91.63%for neck muscle,respectively.The panel also revealed excellent repeatability,reproducibility,sensitivity and universality to mammals and avian species.This study establishes an effective,accurate and low-cost identification technology for the identification of wild and farmed Common Pheasant,and also provides a reference for the development of identification methods for other species.
基金supported by the Foundation of Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration in Longdong (LDSWZY202103)Natural Science Foundation of Gansu Province (22JR5RM210)to B.P.L.Gansu Ziwuling Ecosystem Observation and Research Station (20JR10RA658)。
文摘Avian genomes exhibit compact organization and remarkable chromosomal stability.However,the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored.This study generated a diploid genome assembly for the golden pheasant(Chrysolophus pictus),a species distinguished by the vibrant plumage of males.Each haploid genome assembly included complete chromosomalmodels,incorporatingall microchromosomes.Analysis revealed extensive tandem amplification of immune-related genes across the smallest microchromosomes(dot chromosomes),with an average copy number of 54.Structural variation between the haploid genomes was primarily shaped by large insertions and deletions(indels),with minimal contributions from inversions or duplications.Approximately 28%of these large indels were associated with recent insertions of transposable elements,despite their typically low activity in bird genomes.Evidence for significant effects of transposable elements on gene expression was minimal.Evolutionary strata on the sex chromosomes were identified,along with a drastic rearrangement of the W chromosome.These analyses of the high-quality diploid genome of the golden pheasant provide valuable insights into the evolutionary patterns of structural variation in avian genomes.
基金financed by the Wildlife Conservation Program in 2009, administered by the State Forestry Administration of Chinasupported as a key subject by the Wildlife Conservation and Utilization Program in Yunnan Province (No. XKZ200904)
文摘We modeled foraging habitats of Hume’s Pheasant (Syrmaticus humiae) on a macro-habitat level using ArcGIS in an attempt to provide scientific reference for management and restoration of habitats. Field work was conducted from March to April in 2006 and 2008, and from October to November in 2005 and 2008 in Dazhong Mountain, Yunnan Province, southwestern China. The selection of ecological factors was estimated by means of a resource selection index, distance analysis and the method of hierarchical habitat selection. The foraging habitat patches were modeled spatially by ArcGIS. The results show that actual and potential foraging patches overlapped considerably in spring and autumn. The number and total areas of patches in the autumn were smaller than those in the spring. The minimum and average areas of patches in the autumn were larger than those in the spring, while the maximum areas of actual and potential foraging patches in the autumn were equal to those in the spring. Similarity in the selection for survival and safety consideration in both seasons was the main strategy for landscape factors of habitats by Hume’s Pheasant, while seasonal difference in selecting a landscape matrix was their secondary strategy, affecting landscape factors in the habitat. Changes of foraging patches in both seasons reflect a difference of resources requirement by the bird. Fragmentation and miniaturization of foraging patches would result in the formation of a meta-population of Hume’s Pheasant.
基金National Natural Science Foundation of China(31160426 30560023)the Projects of Science and Technology Office of Hunan (2011FJ3071)
文摘This study aimed to discuss the energy budget of Elliot's pheasant Syrmaticus ellioti in different seasons, with life and health, good growth and normal digestion of Elliot's pheasant as the tested objects, The energy budget of Elliot's pheasant was measured by daily collection of the trial pheasants' excrement in the biological garden of Guangxi Normal University from March 2011 to February 2012. The results showed that the gross energy consumption, metabolic energy and excrement energy varied by season, increasing as temperature decreased. There was significant difference in gross energy consumption, metabolic energy, excrement energy between adults and nonages. There was also a trend that food digestibility of pheasants increases as temperature increases. In the same season, the food digestibility of adults was better than that of nonages. Throughout spring, summer, autumn and winter, the metabolic energy of 4-year adults were 305.77±13.40 kJ/d, 263.67±11.89 kJ/d, 357.23±25.49 kJ/d and 403.12±24.91 kJ/d, respectively, and the nonages were 284.86±17.22 kJ/d, 284. 66±15.16 kJ/d, 402. 26±31.46 kJ/d and 420. 30±31.98 kJ/d, respectively. The minimum metabolic energies were 247.65±21.81 g, 265.86±26.53 g, respectively for each group, detected between 4-year adults and 1-year nonages. Further study is needed to determine whether 29.6 C is the optimal temperature for the Elliot's pheasant.
基金Supported by National Natural Sciences Foundation of China(39830030 and 30170156) Research Programme of Tibetan Bureau of Science and Technology
文摘Galliformes are often difficult to count adequately in their natural habitats due to low detectability of them.In the present study,we confirm availability of feather-count and feces-count as two useful field techniques to estimate the relative abundance of eared-pheasants(Crossoptilon spp.).The former is suitable to forest environments during the post-incubation period,whereas the latter is best in areas with dry climate conditions during the fall-winter season.With the advantages of reduced survey effort and high repeatability,the two techniques are potentially applicable to other Galliform species in habitat selection studies and long-term population monitoring.
基金supported by the National Natural Science Foundation of China (30530130,31101650)
文摘The Blue-eared Pheasant (Crossoptilon auritum) is an important bird species,endemic to China and is ranked as a second grade key protected wildlife species in China.These birds are only found in the mountainous regions of Qinghai,Gansu and Sichuan provinces and the Ningxia Hui Autonomous Region.In order to understand systematically the existing information on the biology of the Blue-eared Pheasant,we provide updated information on its habitat,activity,nest-site features,breeding biology,feeding habits,population status and conservation of this pheasant by integrating published data with the information from our field surveys,conducted from 2006 to 2008 in the Gaihai-zecha National Nature Reserve,Gansu.
基金supported by the NationalNatural Science Foundation of China(Nos.30860044,30360015 and39830030)by Program for New Century Excellent Talents in University(NCET-10-0111)
文摘The Hainan Peacock Pheasant (Polyplectron katsumatae),the smallest allied species of somber forest peacock pheasants among the taxa of Polyplectron spp.,is a rare tropical forest bird endemic to China,and distributed only in the mountainous region of central and southwestern Hainan Island dominated by evergreen broadleaf forests.By integrating references and unpublished data based on our field surveys,we presented information on species status,distribution and population,habitat and home range,breeding ecology and conservation of the Hainan Peacock Pheasant.Future investigation should focus on its life history traits in relation to vulnerability.Considering its limited distribution and small population size,it has recently been recognized as "Endangered" by the IUCN Red List to prevent loss of this island endemic.
基金National Natural Science Foundation of China(3116042630560023)the Projects of Science and Technology Office of Hunan(2011FJ3071).
文摘This study aimed to discuss the energy budget of Elliot’s pheasant Syrmaticus ellioti in different seasons,with life and health,good growth and normal digestion of Elliot’s pheasant as the tested objects,The energy budget of Elliot’s pheasant was measured by daily collection of the trial pheasants’excrement in the biological garden of Guangxi Normal University from March 2011 to February 2012.The results showed that the gross energy consumption,metabolic energy and excrement energy varied by season,increasing as temperature decreased.There was significant difference in gross energy consumption,metabolic energy,excrement energy between adults and nonages.There was also a trend that food digestibility of pheasants increases as temperature increases.In the same season,the food digestibility of adults was better than that of nonages.Throughout spring,summer,autumn and winter,the metabolic energy of 4-year adults were 305.77±13.40 kJ/d,263.67±11.89 kJ/d,357.23±25.49 kJ/d and 403.12±24.91 kJ/d,respectively,and the nonages were 284.86±17.22 kJ/d,284.66±15.16 kJ/d,402.26±31.46 kJ/d and 420.30±31.98 kJ/d,respectively.The minimum metabolic energies were 247.65±21.81 g,265.86±26.53 g,respectively for each group,detected between 4-year adults and 1-year nonages.Further study is needed to determine whether 29.6 C is the optimal temperature for the Elliot’s pheasant.
基金Supported by Natural Science Foundation of Hainan Province(NO:311055)Doctoral Start-up Research Fund of Qiongzhou University(No:QYXB201009)+1 种基金Co-operation Fund between University and Locality of Sanya City(No:2010YD22)Fund for Zoology Major Course of Hainan Province
文摘The polymerase chain reaction combined with direct sequencing was employed to deduce the variety of the grey-rumped pheasant populations in China. Totally 1079 basepair sequences of mitochondrial DNA (mtDNA) control-region gene were analyzed from 121 grey-rumpod pheasants obtained from 13 Chinese lo- calities, 76 variable sites resulted in 91 haplotypes. These populations possessed a high level of genetic diversity, indicating that during their evolution effective population size and polymorphism were not reduced by climatic fluctuations in the Pleistocene ice ages. Phylogenetie analysis indicates that all populations were clustered into two groups, western and eastern. The degree of population differentiation presumably results from a low gene flow ( N, = 0. 33, F,, = 0. 60, P 〈 0. 001 ) between the two groups, and the divergence occurred in the years (2.1 ×10^5 - 2.2 × 105 ). The genetic structure of grey-rumped pheasants in China ap- pears to be the result of the uplift of Qinghai-Tibet Plateau, the existence of Qinling Mountains and Liupan Mountains and cyclical climatic oscillations during the late Pleistocene.
文摘The winter diet and morphological structure of the gastrointestinal tract of the Golden Pheasant(Chrysolophus pictus) was investigated in the Qinling Mountains,Shaanxi Province in 2002/2003.Individual food items in crops were identified by species,where possible,using standard taxonomic methods.The Golden Pheasant consumes exclusively vegetarian foods in the winter,of at least 14 plant species,such as crops and other vegetable species.The digestive tract of the Golden Pheasant is composed of an oesophagus,a stomach,a relatively long intestine measuring 3.4 × standard body length,two fully-developed caeca and a relatively short colon,typical for herbivorous birds.Pebbles of different sizes(0.5-3 mm in diameter) were very frequent in the gizzard.The average dry weight of the pebbles was 10.4±2.5 g and was positively correlated with the weight of digesta in the gizzard(Pearson r = 0.747,p < 0.01,n = 37).The mucosa surface pH of the digestive tract of the Golden Pheasant was slightly acidic,but higher in the crop and gizzard.
基金supported by grants fromthe National Natural Science Foundation of China(30470232)
文摘Sex-biased dispersal,in which individuals of one sex tend to disperse and breed at a greater distance from their natal site than individuals of the opposite sex,appears to be common in vertebrate organisms and is very important to population structures and dynamics.Many studies have documented the dispersal patterns of monogamous birds; however,observations and data are few for polygynous birds.In our study,we report on the indication of sex-biased dispersal in Elliot's Pheasant (Syrmaticus ellioti),a vulnerable species endemic to China,using polymorphic DNA microsatellite loci (105 individual birds and seven loci) and mitochondrial DNA control-region sequences (63 birds).Contrary to the traditional concept that males are the more philopatric sex and females the more dispersing sex in birds,all the genetic information extracted from the two markers suggests that male-biased dispersal is predominant in Elliot's Pheasant.We argue that polygynous species in Galliformes without lekking behavior are more likely to exhibit male-biased dispersal patterns,consistent with the expected results based on the polygynous mating system of Elliot's Pheasant.
基金supported by the 2014 Fundamental Research Program from Science and Technology of the Inner Mongolia Autonomous Region of China
文摘Carotenoids, which generate yellow, orange, and red colors, are crucial pigments in avian plumage. Investigations into genes associated with carotenoid- based coloration in avian species are important; however, such research is difficult because carotenoids cannot be synthetized in vertebrates as they are only derived from dietary sources. Here, the golden pheasant (Chrysolophus pictus) was used as a model in analysis of candidate gene expression profiles implicated in carotenoid binding and deposition. Using mass and Raman spectrometry to confirm the presence of carotenoids in golden pheasant feathers, we found C40H540 and C40H5602 in feathers with yellow to red colors, and in the rachis of iridescent feathers. The global gene expression profiles in golden pheasant skins were analyzed by RNA-seq and all six carotenoid binding candidate genes sequenced were studied by real- time PCR. STAR4, GSTA2, Scarbl, and APOD in feather follicles showed different expressions in red breast and orange nape feathers compared with that of iridescent mantle feathers. Further comparison of golden pheasant yellow rump and Lady Amherst's pheasant (Chrysolophus amherstiae) white nape feathers suggested that GSTA2 and APOD played a potential role in carotenoid-based coloration in golden pheasant.