期刊文献+
共找到3,227篇文章
< 1 2 162 >
每页显示 20 50 100
Preparation of Biodegradable Polylactic Acid/Ethyl Cellulose/Zein Composite Film and Its Effect on the Preservation of Chilled Fresh Meat
1
作者 ZHOU Ling YU Ya +8 位作者 YUAN Mengting WU Dongxu CHEN Ya LIU Yanan SU Jingjing CHEN Sihan WANG Juhua SHENG Bulei XUE Xiuheng 《食品科学》 北大核心 2025年第15期324-337,共14页
In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were inve... In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were investigated.The results showed that the three materials had satisfactory compatibility in the composite film.Addition of EC and zein effectively improved the mechanical properties,thermodynamic properties,surface hydrophilicity,oxygen permeability,and degradation properties of PLA films.When the ratio of PLA to EC was 3:7,the tensile strength and elongation at break reached maximum values of 16.6 MPa and 30.5%,respectively.Moreover,under different conditions,the composite film exhibited better degradability than the PLA film.The composite film with a 3:7 ratio of PLA to EC had the best performance,with a degradation rate of 21.75%after 84 days.Chilled fresh meat wrapped with the composite film showed significantly improved antioxidant,antibacterial,and water-holding properties. 展开更多
关键词 biodegradable film polylactic acid ethyl cellulose ZEIN chilled fresh meat PRESERVATION
在线阅读 下载PDF
Optimization of Comprehensive Performance of Polylactic Acid by Chitosan Blend Modification
2
作者 Tingqiang Yan Xiaodong Wang Yingjie Qiao 《Journal of Renewable Materials》 2025年第8期1587-1604,共18页
Polylactic acid(PLA),a biodegradable polymer,exhibits superior mechanical strength and processability.However,its broader adoption is hindered by inherent brittleness,low hydrophilicity,and sluggish crystallization ki... Polylactic acid(PLA),a biodegradable polymer,exhibits superior mechanical strength and processability.However,its broader adoption is hindered by inherent brittleness,low hydrophilicity,and sluggish crystallization kinetics.Chitosan(CS),a natural polysaccharide renowned for its biocompatibility and biodegradability,offers potential to address these limitations.While both materials have garnered significant attention in materials science,research on their integration via melt blending and the resulting performance enhancements for food-contact plastics remains understudied.This research comprehensively explores how different levels of CS content,from 0% to 10%,impact the characteristics of chitosan/polylactic acid(CS/PLA)composites.It specifically analyzes the influence of various CS concentrations on the mechanical attributes,crystallization behavior,thermomechanical properties,and rheological performance of these composites.The study concludes that a CS content of 4% in the CS/PLA composite results in the best overall properties.At this point,its elongation at break and impact strength reached theirmaximum values(16.16% and 20.63 kJ/m^(2)),representing increases of 23.9% and 15.7% compared to pure PLA.At this particular concentration,CS is evenly distributed throughout the PLA matrix,acting as a heterogeneous nucleating agent.It facilitates the crystallization of the composite material and offers effective reinforcement.This study presents a promising approach for developing environmentally friendly and sustainable alternatives to fossil-based plastics,highlighting significant research value and practical application potential. 展开更多
关键词 polylactic acid CHITOSAN REINFORCEMENT
在线阅读 下载PDF
Isolation of Microcrystalline Cellulose from Wood and Fabrication of Polylactic Acid(PLA)Based Green Biocomposites 被引量:1
3
作者 Selwin Maria Sekar Rajini Nagarajan +5 位作者 Ponsuriyaprakash Selvakumar Ismail Sikiru Oluwarotimi Kumar Krishnan Faruq Mohammad Mohammed Rafi Shaik Nadir Ayrilmis 《Journal of Renewable Materials》 EI CAS 2024年第8期1455-1474,共20页
An innovative microcrystalline cellulose(MCC)natural fibre powder-reinforced PLA biocomposite was investigated using the hand lay-up technique.The polymer matrix composite(PMC)samples were prepared by varying the weig... An innovative microcrystalline cellulose(MCC)natural fibre powder-reinforced PLA biocomposite was investigated using the hand lay-up technique.The polymer matrix composite(PMC)samples were prepared by varying the weight percentages(wt.%)of both PLA matrix and MCC reinforcement:pure PLA/100:0,90:10,80:20,70:30,60:40 and 50:50 wt.%,respectively.From the results obtained,MCC powder,with its impressive aspect ratio,proved to be an ideal reinforcement for the PLA,exhibiting exceptional mechanical properties.It was evident that the 80:20 wt.%biocomposite sample exhibited the maximum improvement in the tensile,flexural,notched impact,compressive strength and hardness by 28.85%,20.00%,91.66%,21.53%and 35.82%,respectively compared to the pure PLA sample.Similarly,during the thermogravimetric analysis(TGA),the same 80:20 wt.%biocomposite sample showed a minimum weight loss of 20%at 400℃,among others.The morphological study using Field Emission Scanning Electron Microscopy(FE-SEM)revealed that the uniform distribution of cellulose reinforcement in the PLA matrix actively improved the mechanical properties of the biocomposites,especially the optimal 80:20 wt.%sample.Importantly,it was evident that the optimal PLA/cellulose biocomposite sample could be a suitable and alternative sustainable,environmentally friendly and biodegradable material for semi/structural applications,replacing synthetic and traditional components. 展开更多
关键词 polylactic acid micro crystalline cellulose BIOCOMPOSITE CHARACTERIZATIONS FESEM environmental pollution
在线阅读 下载PDF
Radial basis function neural network and overlay sampling uniform design toward polylactic acid molecular weight prediction
4
作者 Jiawei Wu Zhihong Chen +2 位作者 Zhongwen Si Xiaoling Lou Junxian Yun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第11期214-221,共8页
Polylactic acid(PLA)is a potential polymer material used as a substitute for traditional plastics,and the accurate molecular weight distribution range of PLA is strictly required in practical applications.Therefore,ex... Polylactic acid(PLA)is a potential polymer material used as a substitute for traditional plastics,and the accurate molecular weight distribution range of PLA is strictly required in practical applications.Therefore,exploring the relationship between synthetic conditions and PLA molecular weight is crucially important.In this work,direct polycondensation combined with overlay sampling uniform design(OSUD)was applied to synthesize the low molecular weight PLA.Then a multiple regression model and two artificial neural network models on PLA molecular weight versus reaction temperature,reaction time,and catalyst dosage were developed for PLA molecular weight prediction.The characterization results indicated that the low molecular weight PLA was efficiently synthesized under this method.Meanwhile,the experimental dataset acquired from OSUD successfully established three predictive models for PLA molecular weight.Among them,both artificial neural network models had significantly better predictive performance than the regression model.Notably,the radial basis function neural network model had the best predictive accuracy with only 11.9%of mean relative error on the validation dataset,which improved by 67.7%compared with the traditional multiple regression model.This work successfully predicted PLA molecular weight in a direct polycondensation process using artificial neural network models combined with OSUD,which provided guidance for the future implementation of molecular weight-controlled polymer's synthesis. 展开更多
关键词 polylactic acid Molecular weight prediction Overlay sampling uniform design Neural network model
在线阅读 下载PDF
Flax/Polylactic Acid(PLA)Core/Sheath Structural Composite Yarn Fabricated by Spindle Braiding Technique
5
作者 ISLAM Md Azizul WANG Ruijie +4 位作者 CHEN Wei YANG Chunbing ZHOU Bangze WODAG Awoke Fenta XU Fujun 《Journal of Donghua University(English Edition)》 CAS 2024年第5期451-460,共10页
The increasing demand for sustainable and environmentally friendly materials has driven research towards the development of green composites.In this work,the flax/polylactic acid(PLA)braided yarns were fabricated by b... The increasing demand for sustainable and environmentally friendly materials has driven research towards the development of green composites.In this work,the flax/polylactic acid(PLA)braided yarns were fabricated by braiding PLA filaments with 4 to 24 spindles on flax yarns.After curing at different temperatures(180℃and 190℃),the core/sheath structural flax/PLA composite yarns were manufactured.According to the results of the tensile test,the flax/PLA composite yarn with 4-spindle PLA yarns as a sheath layer and at a curing temperature of 180℃reached the maximum elastic modulus of about(5.79±0.65)GPa and the maximum tensile strength of about(162.17±18.18)MPa.This flax/PLA composite yarn with good mechanical properties would be suitable for green composites in the automobile manufacturing industry and building materials. 展开更多
关键词 FLAX polylactic acid(PLA) BRAIDING composite yarn tensile property
在线阅读 下载PDF
Interfacial-engineered robust and high performance flexible polylactic acid/polyaniline/MXene electrodes for high-perfarmance supercapacitors
6
作者 Zhaoyang Li Jiongru Li +11 位作者 Bo Wu Huige Wei Hua Guo Zeinhom M.El-Bahy Baosheng Liu Muhun He Saad Melhi Xuetao Shi Saleh D.Mekkey Yunlong Sun Ben Bin Xu Zhanhu Guo 《Journal of Materials Science & Technology》 CSCD 2024年第36期201-210,共10页
Flexible supercapacitors with high mechanical strength,excellent flexibility,and high performance are highly desired to meet the increasing demands of flexible electronics.However,the trade-offbetween mechanical and e... Flexible supercapacitors with high mechanical strength,excellent flexibility,and high performance are highly desired to meet the increasing demands of flexible electronics.However,the trade-offbetween mechanical and electrochemical properties remains challenging.In this context,an interface-engineered strategy approach was proposed to construct polylactic acid(PLA)/polyaniline(PANI)/MXene(PPM)film electrodes for flexible supercapacitor applications.In the PPM electrode,the porous PLA prepared from the nonsolvent-induced-phase-separation method served as an ideal flexible substrate,providing excel-lent flexibility and high mechanical strength,whereas PANI as the coupling agent,enhanced the interfa-cial strength between PLA and the electroactive MXene that was firmly anchored and deposited on PLA through a facile layer-by-layer dip coating method.The tensile strength at break,elongation at break,and toughness of PPM are 53.09 MPa,11.09%,and 4.12 MJ/m^(3),respectively,much higher than those of pure MXene(29.36 MPa,4.62%,and 0.75 MJ/m^(3)).At an optimum mass loading density of 3 mg cm−2 for MXene,the fabricated PPM3 film electrode achieved a high specific capacitance of 290.8 F g^(−1)at a cur-rent density of 1 A g^(−1)in the three-electrode setup,approximately 1.5 times that of 190.8 F g^(−1)for pure MXene.Meanwhile,the symmetric all-solid-state supercapacitor based on PPM3 film electrodes delivers a high specific capacitance of 193.7 F g^(−1)at a current density of 0.25 A g^(−1),with a corresponding high energy density of 9.3 Wh kg^(−1)at a power density of 291.3 W kg^(−1).The SC retains 86%of its original ca-pacitance even bent at 120°and also possesses an excellent fire-retardant ability,demonstrating its great potential for flexible and safe wearable electronics. 展开更多
关键词 Flexible supercapacitors Porous polylactic acid MXene Interface engineering
原文传递
纳米TiO_(2)增强PLA/PHBV复合材料的制备及性能研究
7
作者 刘会雪 吴俊峰 《塑料科技》 北大核心 2025年第10期123-127,共5页
利用熔融共混法制备纳米TiO_(2)增强的聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PLA/PHBV)复合材料,并系统研究其热性能、力学性能及微观结构形貌。结果表明:随着PHBV含量的增加,复合材料的断裂伸长率先增大后减小,当PHBV质量分数为30%... 利用熔融共混法制备纳米TiO_(2)增强的聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PLA/PHBV)复合材料,并系统研究其热性能、力学性能及微观结构形貌。结果表明:随着PHBV含量的增加,复合材料的断裂伸长率先增大后减小,当PHBV质量分数为30%时,断裂伸长率达到最大值108.7%。随着纳米TiO_(2)含量的增加,复合材料的断裂伸长率逐渐下降,但仍均高于纯PLA;拉伸强度先增大后减小,当纳米TiO_(2)质量分数为5%时,拉伸强度达到最大值29.03 MPa。通过调节PHBV和纳米TiO_(2)的添加比例可同时实现复合材料的增韧和增强。X射线衍射仪(XRD)和差示扫描热量仪(DSC)测试结果表明,随着纳米TiO_(2)含量的增加,PLA的结晶度呈现先升高后降低的趋势,说明纳米TiO_(2)起到成核剂的作用,优化了结晶结构。热重分析仪(TG)测试结果表明,纳米TiO_(2)的加入提高了复合材料的外延起始温度,随着纳米TiO_(2)含量的增加,该温度呈现先升后降的趋势,复合材料的热稳定性得到改善。 展开更多
关键词 聚(3-羟基丁酸酯-co-3-羟基戊酸酯) 聚乳酸 复合材料 力学性能 热学性能 微观形貌
原文传递
生物基PLA/PHBV纤维纯纺纱线开发实践与应用
8
作者 程小明 赵静 +1 位作者 齐芳汐 吕治家 《纺织导报》 2025年第3期22-25,共4页
文章针对生物基PLA/PHBV纤维的特性,阐述了其纯纺成纱过程中的技术难点及纺纱工艺路线。实践证明:通过对纺纱工艺流程、梳棉梳理专件、各处工艺速度及参数的优选,采用短流程、柔分梳、多排杂、快转移、逆牵伸、重加压、紧集聚、大捻系... 文章针对生物基PLA/PHBV纤维的特性,阐述了其纯纺成纱过程中的技术难点及纺纱工艺路线。实践证明:通过对纺纱工艺流程、梳棉梳理专件、各处工艺速度及参数的优选,采用短流程、柔分梳、多排杂、快转移、逆牵伸、重加压、紧集聚、大捻系数的工艺配置,解决了生物基纤维脆性大、断裂强力低、梳理难度大、摩擦抱合力小等导致的纯纺生产难度大问题,实现了生物基PLA/PHBV纤维集聚赛络纯纺9.84 tex纱线的生产。结合织物组织设计与生物基PLA/PHBV纤维的上染属性差异,开发了层次丰富、肌理感强烈的大提花面料,其产品的抑菌与消臭性能均达到预期效果。相关研究表明,生物基PLA/PHBV纤维纯纺纱线物理性能优良且抑菌与消臭功能性显著,在开发绿色低碳、安全健康的功能性纺织品方面具有很大潜力。 展开更多
关键词 生物基 PLA/phbv 纯纺纱线 抑菌 消臭
在线阅读 下载PDF
Preparation, Characterization and in Vitro Release of Ciprofloxacin Polylactic Acid Microspheres 被引量:1
9
作者 杨帆 梁仁 +3 位作者 潘育方 赵耀明 旺朝阳 徐安龙 《Journal of Chinese Pharmaceutical Sciences》 CAS 2005年第2期95-99,共5页
Aim Ciprofloxacin polylactic acid microspheres (CFX-PLA-MS) were preparedusing solvent evaporation method from a solid-in-oil-in-water emulsion system. Methods Orthogonalexperiment was used to optimize the method of C... Aim Ciprofloxacin polylactic acid microspheres (CFX-PLA-MS) were preparedusing solvent evaporation method from a solid-in-oil-in-water emulsion system. Methods Orthogonalexperiment was used to optimize the method of CFX-PLA-MS preparation. Microspheres werecharacterized in terms of morphology, size, encapsulation efficiency, drug loading and in vitro drugrelease. Results The physical state of CFX-PLA-MS was determined by scanning electron microscopy(SEM) and differential scanning calorimetry (DSC) . Microspheres formed were spherical with smoothsurfaces. Drug was enveloped in microspheres without mixing physically with PLA. The averageparticle size was 280.80 ± 0.15 μm, with over 90% of microspheres falling in the range of 250 -390 μm. The encapsulation efficiency was 65.8% ± 0.58% and the drug loading was 34.1% ± 0.51% .In vitro release study revealed a profile of sustained release of Ciprofloxacin from CFX-PLA-MS. Theaccumulated release percentage and half-life (T_(1/2) of Ciprofloxacin microspheres were 84.0% in53.2 h, and 31.9 h, respectively. Higuchi equation was Q= -0.0043 + 0.003 9 t^(1/2), r = 0.9941.Conclusion Ciprofloxacin microspheres have been successfully prepared and sustained release of CFXfrom microspheres is achieved. 展开更多
关键词 CIPROFLOXACIN polylactic acid MICROSPHERES PREPARATION release in vitro
暂未订购
PHBV/火山岩/黄铁矿协同强化处理养殖尾水效果分析
10
作者 张海耿 王芳颖 +3 位作者 曹鑫圆 孙雅婷 许中硕 张宇雷 《能源环境保护》 2024年第1期151-158,共8页
针对水产养殖尾水低碳氮比导致脱氮除磷效率不高的问题,研制了基于3-羟基丁酸酯和3-羟基戊酸酯共聚物(PHBV)/火山岩/黄铁矿协同耦合的生物过滤装置,并对其处理养殖尾水的效果进行了分析。设计了2组不同滤料填充量的过滤装置,柱1装置从... 针对水产养殖尾水低碳氮比导致脱氮除磷效率不高的问题,研制了基于3-羟基丁酸酯和3-羟基戊酸酯共聚物(PHBV)/火山岩/黄铁矿协同耦合的生物过滤装置,并对其处理养殖尾水的效果进行了分析。设计了2组不同滤料填充量的过滤装置,柱1装置从上至下依次填充黄铁矿15 cm、混合滤料15 cm和火山岩5 cm,柱2装置填充黄铁矿10 cm、混合滤料15 cm和火山岩10 cm,分析了不同填料质量比对脱氮除磷效率的影响。结果表明,柱2装置对硝酸盐氮的平均去除率达到了97.8%,显著高于柱1装置(p<0.05),而柱2对磷酸盐的平均去除率低于柱1,平均去除率仅为35.0%。增加火山岩质量比有助于提升装置对硝酸盐的去除效率,而增加黄铁矿质量比有助于提高装置对磷酸盐的去除效率。当溶解氧浓度在1.2~1.5 mg/L之间时,装置可以同时进行脱氮除磷。综上所述,采用PHBV/火山岩/黄铁矿协同强化处理工艺可以实现养殖尾水中氮磷等营养盐的同步去除,为解决养殖尾水深度净化问题提供了新方法。 展开更多
关键词 phbv 火山岩 黄铁矿 硝酸盐氮 磷酸盐 去除效率
在线阅读 下载PDF
Biodegradation and Mechanical Property of Polylactic Acid/Thermoplastic Starch Blends with Poly (ethylene glycol) 被引量:6
11
作者 薛平 WANG Kejian +1 位作者 贾明印 YANG Meijuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期157-162,共6页
The effects of adding poly (ethylene glycol) (PEG) into polylactic acid/thermoplastic starch blends (PLA/TPS) on the properties were investigated by DSC, SEM and mechanical property-testing. The blends of PLA/TP... The effects of adding poly (ethylene glycol) (PEG) into polylactic acid/thermoplastic starch blends (PLA/TPS) on the properties were investigated by DSC, SEM and mechanical property-testing. The blends of PLA/TPS blended with increasing content PEG exhibited lower temperature of glass transition (T) and lower temperature of melting (T) as well as higher melt flow index (MFI), which indicates the plasticization and proeessability of the composites were dramatically improved. The tensile strength, flexural strength and izod impact strength of PLA/TPS (80/20) increased at first and then decreased with increasing content of PEG due to stronger interfacial adhesion. The optimized mechanical property can be obtained for the blend with 3 wt % PEG. The samples containing PEG after soil burial for 5 months showed quicker degradation being accompanied with large weight loss and mechanical properties loss. 展开更多
关键词 BIODEGRADATION mechanical property polylactic acid STARCH
原文传递
Effect of Starch/Polylactic Acid Ratio on the Interdependence of Two-Phase and the Properties of Composites 被引量:3
12
作者 左迎峰 GU Jiyou +3 位作者 CAO Jun WEI Shuangying TAN Haiyan 张彦华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期1108-1114,共7页
Starch/polylactic acid(PLA) composites were prepared by melt extrusion, with corn starch and PLA as raw materials, glycerol as the plasticizer. Effects of starch/PLA ratio on the interdependence of two-phase and other... Starch/polylactic acid(PLA) composites were prepared by melt extrusion, with corn starch and PLA as raw materials, glycerol as the plasticizer. Effects of starch/PLA ratio on the interdependence of two-phase and other properties of the composites were studied. The combination of results of TGA with SEM indicated that the interdependence between starch and PLA was increased gradually as the starch/PLA ratio reduced. DSC results showed that the glass transition temperature(Tg), melting temperature(Tm) and degree of crystallinity of PLA in composites were increased gradually, whereas the cold crystallization temperature(Tc) was gradually decreased as the starch/PLA ratio reduced. The rheological properties of composites were closely related with the interdependence of two-phase, with reducing starch/PLA proportion, the interdependence was increased, and then the strain for storage modulus was firstl reduced and then gradually increased. Frequency scanning showed that the storage modulus and complex viscosity were decreased with reducing starch content. As the starch/PLA ratio reduced, the matrix phase PLA was increased, so that the strength of composites was increased gradually, whereas water absorption rate was decreased gradually. 展开更多
关键词 corn starch polylactic acid mixing ratio interdependence of two-phase PROPERTIES
原文传递
Thermal Decomposition and Kinetics of Mixtures of Polylactic Acid and Biomass during Copyrolysis 被引量:7
13
作者 王刚 李爱民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期929-933,共5页
Thermal decomposition of polylactic acid (PLA) was studied in the presence of pine wood sawdust (PS), walnut shell (WS), corncob (CC) in order to understand the pyrolytic behavior of these components occurring... Thermal decomposition of polylactic acid (PLA) was studied in the presence of pine wood sawdust (PS), walnut shell (WS), corncob (CC) in order to understand the pyrolytic behavior of these components occurring in waste. A thermogravimetric analyzer (TGA) was applied for monitoring the mass loss profiles under heating rate of 10℃·min^-1. Results obtained from this comprehensive investigation indicated that PLA was decomposed in the temperature range 300 -372℃, whereas the thermal degradation temperature of biomass is 183-462℃. The difference of mass loss (AW) between experimental and theoretical ones, calculated as algebraic sums of those from each separated component, is about 17%-46% at 300-400℃. These experimental results indicated a significant synergistic effect during PLA and biomass copyrolysis. Moreover, a kinetic analysis was performed to fit thermogravimetric data, the global processes being considered as one to two consecutive reactions. A reasonable fit to the experimental data was obtained for all materials and their blends. 展开更多
关键词 BIOMASS KINETICS polylactic acid COPYROLYSIS
在线阅读 下载PDF
Release performance and sustained-release efficacy of emamectin benzoate-loaded polylactic acid microspheres 被引量:3
14
作者 YIN Ming-ming ZHU Xin-yan CHEN Fu-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第3期640-647,共8页
High-performance liquid chromatography (HPLC) was employed to determine drug release rates based on emamectin benzoate concentrations in the medium. Release kinetics equations were used to fit the drug release behav... High-performance liquid chromatography (HPLC) was employed to determine drug release rates based on emamectin benzoate concentrations in the medium. Release kinetics equations were used to fit the drug release behavior. The effects of particle size and release medium pH on the release rate were also investigated. The indoor toxicity of emamectin benzoate-loaded polylactic acid microspheres on the diamondback moth larva (Plutella xylostella) was studied to explore drug sustained-release performance. In acidic and neutral media, the drug release behavior of the microspheres was in accord with the first-order kinetics equation. Increasing the spray dosage of emamectin benzoate-loaded polylactic acid microspheres initially resulted in an equivalent insecticidal efficacy with the conventional emamectin benzoate microemulsion. However, the drug persistence period was four-fold longer than that observed using the conventional formulation. The developed emamectin benzoate-loaded polylactic acid microspheres showed dramatic sustained-release performance. A treatment threshold of greater than 35 mg mL-1 was established for an efficient accumulated release concentration of emamectin benzoate-loaded microspheres. 展开更多
关键词 emamectin benzoate polylactic acid microspheres release performance kinetics equation sustained-release efficacy
在线阅读 下载PDF
Tensile Properties of Mechanically-Defibrated Cellulose Nanofiber-Reinforced Polylactic Acid Matrix Composites Fabricated by Fused Deposition Modeling 被引量:5
15
作者 KURITA Hiroki BERNARD Chrystelle +1 位作者 LAVROVSKY Agathe NARITA Fumio 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期68-74,共7页
Biodegradable polymers are highly attractive as potential alternatives to petroleum-based polymers in an attempt to achieve carbon neutrality whilst maintaining the mechanical properties of the structures.Among these ... Biodegradable polymers are highly attractive as potential alternatives to petroleum-based polymers in an attempt to achieve carbon neutrality whilst maintaining the mechanical properties of the structures.Among these polymers,polylactic acid(PLA)is particularly promising due to its good mechanical properties,biocompatibility and thermoplasticity.In this work,we aim to enhance the mechanical properties of PLA using mechanically-defibrated cellulose nanofibers(CNFs)that exhibit remarkable mechanical properties and biodegradability.We also employ fused deposition modeling(FDM),one of the three-dimensional printing methods for thermoplastic polymers,for the low-cost fabrication of the products.Mechanically-defibrated CNF-reinforced PLA matrix composites are fabricated by FDM.Their tensile properties are investigated in two printing directions(0°/90°and+45°/-45°).The discussion about the relationship between printing direction and tensile behavoir of mechanically-defibrated CNF-reinforced PLA matrix composite is the unique point of this study.We further discuss the microstructure and fracture surface of mechanically-defibrated CNF-reinforced PLA matrix composite by scanning electron microscope. 展开更多
关键词 cellulose nanofiber(CNF) polylactic acid(PLA) tensile property fused deposition modeling
暂未订购
Polylactic Acid Nanoparticles Targeted to Brain Microvascular Endothelial Cells 被引量:1
16
作者 王华芳 胡豫 +1 位作者 孙望强 谢长生 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2005年第6期642-644,共3页
In this work, blank polylactic acid (PLA) nanoparticles with unstained surface were prepared by the nano-deposition method. On the basis of the preparation, the effect of surface modification on brain microvascular ... In this work, blank polylactic acid (PLA) nanoparticles with unstained surface were prepared by the nano-deposition method. On the basis of the preparation, the effect of surface modification on brain microvascular endothelial cells (BMECs) targeting was examined by in vivo experiments and fluorescence microscopy. The results showed that PLA nanoparticles are less toxic than PACA nanoparticles but their BMECs targeting is similar to PACA nanoparticles. The experiments suggest that drugs can he loaded onto the particles and become more stable through adsorption on the surface of PLA nanoparticles with high surface activity. The surface of PLA nanoparticles was obviously modified and the hydrophilicity was increased as well in the presence of non-ionic surfactants on PLA nanoparticles. As a targeting moiety, polysobate 80 (T-80) can facilitate BMECs targeting of PLA nanoparticles. 展开更多
关键词 polylactic acid nanoparticles polysorbate brain microvascular endothelial cells TARGETING
暂未订购
The UV Aging Properties of Maleic Anhydride Esterified Starch/Polylactic Acid Composites 被引量:3
17
作者 左迎峰 吴义强 +1 位作者 GU Jiyou ZHANG Yanhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期971-977,共7页
Esterified starch/polylactic acid(ES/PLA) blending composite was prepared by melting extrusion with maleic anhydride esterified starch and PLA as the raw materials. The composite was accelerated aging by using UV ag... Esterified starch/polylactic acid(ES/PLA) blending composite was prepared by melting extrusion with maleic anhydride esterified starch and PLA as the raw materials. The composite was accelerated aging by using UV aging box, and its properties were characterized by Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM), X-ray diffraction(XRD), thermo gravimetric analysis(TGA) and mechanical testing machine. FT-IR and SEM results show that the infrared absorption peak intensities of C-O, C-H, and C=O in aged samples decrease gradually with increasing aging time. The damage degree of surface and internal of aged samples increases gradually. XRD analysis results show that after aging treatment, the crystalline diffraction peak of thermoplastic esterified starch at 2θ = 21° disappears and the diffraction peaks of PLA at 2θ = 16.5° appear, indicating that the hydrolysis rate of esterified starch is greater than that of PLA. The crystallinity of PLA in aged sample shows an increasing trend at first followed by a decreasing one along with the increasing time of aging treatment, suggesting that the hydrolysis of amorphous regions of PLA is more preferential than its crystalline regions. Because of the influence of crystal structure and the change of composition structure, the initial decomposition temperature of aging test specimen gradually increases with the extension of aging time. The maximum decomposition rate temperature and residual mass increases at first, and then decrease after the aging time extending to 1600 h. As the aging time increases, the damage degree of combination interface between esterification starch and PLA is exacerbated, resulting in the tensile strength and bending strength of aged specimen decreasing gradually. 展开更多
关键词 esterified starch maleic anhydride polylactic acid UV aging
原文传递
Biocomposites of Polylactic Acid Reinforced by DL-Lactic Acid-Grafted Microfibrillated Cellulose 被引量:2
18
作者 Chaodong Liu Yutong Yang +1 位作者 Boyu Cui Weihong Wang 《Journal of Renewable Materials》 SCIE EI 2022年第11期2961-2972,共12页
Microfibrillated cellulose(MFC)is often added to polylactic acid(PLA)matrixes as a reinforcing filler to obtain fully-biodegradable composites with improved mechanical properties.However,the incompatibility between MF... Microfibrillated cellulose(MFC)is often added to polylactic acid(PLA)matrixes as a reinforcing filler to obtain fully-biodegradable composites with improved mechanical properties.However,the incompatibility between MFC and the PLA matrix limits the mechanical performance of MFC-reinforced PLA composites.In this paper,DL-lactic acid-grafted-MFC(MFC-g-DL)was used to improve the compatibility with PLA.Reinforced composites were prepared by melt extrusion and hot-cold pressing.The tensile strength of the PLA/MFC-g-DL composite increased by 22.1%compared with that of PLA after adding 1%MFC-g-DL.Scanning electron microscopy(SEM),differential scanning calorimetry(DSC),and dynamic thermomechanical analysis(DMA)were used to explore the enhancement mechanism.The energy dissipation in the MFC network and the improved compatibility between PLA and MFC-g-DL played important roles in the reinforcement.The SEM results showed that there was a closer combination between PLA and MFC-g-DL.The DSC results showed that the addition of cellulose changed the glass transition temperature,melting temperature,and crystallization temperature of PLA.The TG results showed that the initial and maximum decomposition temperature were lower than those of PLA.The ultraviolet spectra showed that the composite had good transparency at a low concentration of MFC-g-DL. 展开更多
关键词 polylactic acid microfibrillated cellulose tensile properties TRANSPARENCY
在线阅读 下载PDF
Flexural and Dynamic Mechanical Properties of Alkali-Treated Coir/Pineapple Leaf Fibres Reinforced Polylactic Acid Hybrid Biocomposites 被引量:3
19
作者 Ramengmawii Siakeng Mohammad Jawaid +4 位作者 Mohammad Asim Hassan Fouad Sameer Awad Naheed Saba Suchart Siengchin 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1430-1438,共9页
Polylactic acid(PLA)possesses good mechanical and biodegradability properties which make it a suitable material for polymer composites whereas brittleness and high costs limit its utilization in various applications.T... Polylactic acid(PLA)possesses good mechanical and biodegradability properties which make it a suitable material for polymer composites whereas brittleness and high costs limit its utilization in various applications.The reinforcement of natural fibres with biopolymers has been formed to be an efficient technique to develop composites having the ability to be fully biodegradable.This study concerns with the incorporation of various percentages of untreated and alkali-treated Coir Fibres(CF)and pineapple leaf fibres(PALF)in PLA biocomposites and characterizations of flexural,morphological and dynamic mechanical properties.Flexural properties showed that the treated C1P1 hybrid composites(C1P1A)displayed highest flexural strength(35.81 MPa)and modulus(5.28 GPa)among all hybrid biocomposites.Scanning Electron Microscopy(SEM)revealed a behaviour of fibre-matrix adhesion in untreated treated biocomposites.SEM observation revealed good dispersion of the fillers in PLA.Dynamic mechanical analysis revealed that C1P1A showed highest glass transition temperature(Tg)and storage modulus(E')while untreated C3P7 displayed the least Tg and E'.Overall findings showed that alkali-treated hybrid biocomposites(CF/PALF/PLA)especially C1P1A have improved flexural properties,dynamic and morphological properties over untreated biocomposites.Success of these findings will provide attracting consideration of these hybrid biocomposites for various lightweight uses in a broad selection of industrial applications such as biomedical sectors,automobile,construction,electronics equipment,and hardware tools. 展开更多
关键词 Coir fibres Pineapple leaf fibres Biocomposites polylactic acid Mechanical properties Dynamic mechanical properties
在线阅读 下载PDF
Lanthanum doped octacalcium phosphate/polylactic acid scaffold fabricated by 3D printing for bone tissue engineering 被引量:2
20
作者 Zeya Xu Bin Lin +7 位作者 Chaoqian Zhao Yanjin Lu Tingting Huang Yan Chen Jungang Li Rongcan Wu Wenge Liu Jinxin Lin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第23期229-242,共14页
Lanthanum(La)has tremendous potential in the treatment and prevention of bone diseases especially osteoporosis and metabolic disorders.However,controlling its distribution and keeping the release of La^(3+)ions sustai... Lanthanum(La)has tremendous potential in the treatment and prevention of bone diseases especially osteoporosis and metabolic disorders.However,controlling its distribution and keeping the release of La^(3+)ions sustained and steady in the body is still a big challenge.In this study,we prepared La-OCP powders via co-precipitation method,and further prepared La-OCP/PLA porous scaffolds by 3 D printing.La^(3+)was successfully introduced into the OCP crystal structure and substituted Ca^(2+)at the Ca-5 and Ca-8 sites.In particular,some La^(3+)ions were deposited on the crystal surface in the form of nanoparticles.Both octacalcium phosphate(OCP,Ca_(8)H_(2)(PO_(4))_6·5 H_(2)O)crystals and nanoparticles played as the carriers for La^(3+)ions.The La-OCP/PLA scaffolds displayed obvious mineralization effects and sustained release of La^(3+).The scaffolds contained a uniform structure with rough micro surface topography which acted as a suitable pathway for BMSCs cells to adhere,grow and proliferation.At a certain La^(3+)concentration,the extracts from La-OCP/PLA scaffolds increased the expression of osteogenesis-related genes,thus promoting the osteogenic differentiation of BMSCs.Moreover,the extracts regulated the immune responses.The experiment in vivo proved that La-OCP/PLA porous scaffolds were safe and could enhance bone defect regeneration in vivo.These findings suggest that 3 D printed La-OCP/PLA porous scaffolds have promising potentials in bone tissue engineering. 展开更多
关键词 LANTHANUM Octacalcium phosphate SCAFFOLD 3D printing Bone tissue engineering polylactic acid
原文传递
上一页 1 2 162 下一页 到第
使用帮助 返回顶部