期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进物理信息神经网络的地下水砷富集过程反应运移数值模拟
1
作者 邓芳 吴吉春 +4 位作者 杨蕴 李俊霞 谢先军 蒋建国 祝晓彬 《中国科学:地球科学》 北大核心 2025年第9期2902-2917,共16页
原生高砷劣质地下水富集与迁移过程受到复杂的水文条件和地球化学作用控制,传统的地下水反应运移模拟技术在求解多路径反应网络系统时面临收敛性和计算效率的双重挑战.本文基于物理信息神经网络(physicsinformed neural networks,PINNs)... 原生高砷劣质地下水富集与迁移过程受到复杂的水文条件和地球化学作用控制,传统的地下水反应运移模拟技术在求解多路径反应网络系统时面临收敛性和计算效率的双重挑战.本文基于物理信息神经网络(physicsinformed neural networks,PINNs),提出将物理约束与PHREEQC地球化学反应模块耦合,开发了一种改进的物理信息神经网络模型(PH-PINNs).考虑微生物介导的铁-硫-碳-氮地下水砷富集反应网络,依托山西大同盆地山阴试验场地监测数据资料,构建了场地尺度二维地下水砷富集与迁移过程的反应运移数值模型.结果表明,PH-PINNs模型在捕捉非线性和非平稳特征方面优于传统PINNs,预测结果的均方根误差显著低于PINNs,相较于PINNs降低50%以上,提升了地下水复杂非线性反应网络的预测精度,展现了更高的模型求解稳定性和适应性,为多组分耦合、高度非线性地下水系统的科学研究和实际应用提供了新的模拟方法. 展开更多
关键词 原生劣质地下水 反应网络 数值方法 微生物介导 ph-pinns
原文传递
Improved physics-informed neural network for reactive transport modeling of groundwater arsenic enrichment
2
作者 Fang DENG Jichun WU +4 位作者 Yun YANG Junxia LI Xianjun XIE Jianguo JIANG Xiaobin ZHU 《Science China Earth Sciences》 2025年第9期2781-2796,共16页
The enrichment and migration of geogenic high-arsenic contaminated groundwater are controlled by complex hydrological conditions and hydrogeochemical processes.Conventional reactive transport models encounter dual cha... The enrichment and migration of geogenic high-arsenic contaminated groundwater are controlled by complex hydrological conditions and hydrogeochemical processes.Conventional reactive transport models encounter dual challenges,including poor convergence and low computational efficiency,when simulating multi-pathway reaction networks.To address these limitations,this study develops an improved physics-informed neural network(PH-PINNs)by integrating physical constraints with the PHREEQC geochemical module.The proposed model explicitly accounts for microbially mediated reaction networks involving iron-sulfur-carbon-nitrogen cycles,which drive arsenic enrichment and mobilization in groundwater.Leveraging field monitoring data from the Shanyin experimental site in the Datong Basin,Shanxi Province,a two-dimensional numerical model was constructed to simulate site-scale arsenic reactive transport.Results indicate that the PH-PINNs model significantly outperforms traditional PINNs in capturing nonlinear and non-stationary dynamics,reducing the root mean square error(RMSE)by over 50%.The model exhibits superior predictive accuracy,numerical stability,and adaptability for complex,multi-component reaction networks.This framework provides a robust tool for advancing both theoretical research and practical management of arsenic-contaminated groundwater systems. 展开更多
关键词 Geogenic contaminated groundwater Reactive network Numerical methods Microbially mediated ph-pinns
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部