Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu...Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu(Ⅱ)/Cu(Ⅰ)and Fe(Ⅲ)/Fe(Ⅱ)cycles.Innovatively,we observed a significant enhancement on the degradation of organic contaminants when Cu(Ⅱ)and Fe(Ⅲ)were coupled to activate PMS in borate(BA)buffer.The degradation efficiency of Rhodamine B(RhB,20μmol/L)reached up to 96.3%within 10 min,which was higher than the sum of individual Cu(Ⅱ)-and Fe(Ⅲ)-activated PMS process.Sulfate radical,hydroxyl radical and high-valent metal ions(i.e.,Cu(Ⅲ)and Fe(IV))were identified as the working reactive species for RhB removal in Cu(Ⅱ)/Fe(Ⅲ)/PMS/BA system,while the last played a predominated role.The presence of BA dramatically facilitated the reduction of Cu(Ⅱ)to Cu(Ⅰ)via chelating with Cu(Ⅱ)followed by Fe(Ⅲ)reduction by Cu(Ⅰ),resulting in enhanced PMS activation by Cu(Ⅰ)and Fe(Ⅱ)as well as accelerated generation of reactive species.Additionally,the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(Ⅱ)and Fe(Ⅲ).In a word,this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.展开更多
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d...Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.展开更多
Integrating photocatalysis technology with peroxymonosulfate oxidation possesses huge potential for degrading stubborn pollutant.Herein,a porous ultra-thin carbon nitride with C-defect O-doping and advanced n-π^(∗)tr...Integrating photocatalysis technology with peroxymonosulfate oxidation possesses huge potential for degrading stubborn pollutant.Herein,a porous ultra-thin carbon nitride with C-defect O-doping and advanced n-π^(∗)transition was customized by one-pot thermalinduced polymerization of molten urea assisted with paraformaldehyde.Via visible-light coupling peroxymonosulfate activation,the DCN-100 can completely photodegrade 2,4-dichlorophenol,and rate constant is 136.6 and 37.9 times that of CN and DCN-100 without peroxymonosulfate.The light-absorption of DCN-100 surpasses 550 nm,specific surface area rises from 45.03 to 98.58m^(2)/g,and charge behaviors are significantly improved.The effects of paraformaldehyde amount,PMS dosage,pH,2,4-dichlorophenol concentration,different water-body,wavelength and recycling times on photodegradation performance were explored in detail.Via capture experiments,ESR,LC-MS,Fukui-function,TEXT toxicity assessment and DFT theoretical calculation,themain active substances,degradation pathway,intermediate toxicity and enhanced activity mechanism of DCN-100 were clarified.The research provides a cost-effective,high-efficiency and environmental-friendly photocatalysts to activate peroxymonosulfate for water remediating.展开更多
Bisphenol A(BPA)has threatened ecological safety and human health due to its endocrine disrupting effect and widely diffused in the environment.Peroxymonosulfate(PMS)based on oxidation technology exhibits good potenti...Bisphenol A(BPA)has threatened ecological safety and human health due to its endocrine disrupting effect and widely diffused in the environment.Peroxymonosulfate(PMS)based on oxidation technology exhibits good potential for environmental remediation whereas the highly efficient activator needs to be developed.Herein,the Bi OBr(BOB)was synthesized to efficiently activate PMS to remove 95.6%of BPA within 60 min.The observed rate constant of BPA removal in BOB/PMS system is 0.049 min^(-1),which is 60 and 148 times to that of the BOB and PMS processes separately and 129 times to the compared Bi OCl(BOC)/PMS system,respectively.Comparison experiments and analytic methods demonstrate that BOB with a larger content of oxygen vacancies(Ov)can act as the bridge of electron transfer between Bi^(3+)/Bi^(4+)with PMS to enhance the activation ability for PMS,resulting in the production of abundant reactive oxygen species(O_(2)^(·-)and ^(1)O_(2)).Additionally,the breakdown processes of BPA and the toxicity of its byproducts were uncovered,and the potential for actual water treatment was evaluated to confirm the detoxification,efficiency,stability and practical use of the BOB/PMS system for eliminating BPA.This study may widen the application of traditional semiconductors and develop the cost-effective PMS activation methods for environmental remediation.展开更多
N-doped graphite carbon sphere coated cobalt nanoparticle catalyst(Co@C-N-900),prepared by solvothermal-calcination method,is applied to activate peroxymonosulfate(PMS)for bisphenol A(BPA)elimination.The outcomes demo...N-doped graphite carbon sphere coated cobalt nanoparticle catalyst(Co@C-N-900),prepared by solvothermal-calcination method,is applied to activate peroxymonosulfate(PMS)for bisphenol A(BPA)elimination.The outcomes demonstrate that the Co@C-N-900 could effectively activate PMS,thereby causing efficient removal of BPA in water.In addition,the Co@C-N-900/PMS system also has the advantages of low metal leaching,applicability in high salinity environments,good selectivity and stability.Further investigations using electron paramagnetic resonance,chronoamperometry,and quenching experiments demonstrated that the Co@C-N-900/PMS system is a typical non-radical route with singlet oxygen(^(1)O_(2))as the main reactive oxygen species(ROS).Density functional theory calculations(DFT)indicate that N-doping can effectively regulate the charge distribution on the catalyst surface,generating acidic/alkaline sites favorable for PMS adsorption and activation.Furthermore,it also can enhance the interaction and charge transfer capacity between the Co@C-N-900 and PMS.Lastly,LC-QTOF-MS/MS analysis revealed two possible BPA degradation pathways:(1)^(1)O_(2)attacked the isopropyl group in BPA between the two phenyl groups,causingβ-scission to occur.(2)Following the oxidation of the hydroxyl group in the aromatic ring of BPA,^(1)O_(2)could cause furtherβ-scission.The prepared Co@C-N-900 catalyst is a very promising catalyst,which would offer a workable remedy for treating water pollution.展开更多
In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_...In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_(2),Pd/CeO_(2),Pd/TiO_(2)and Pd/Al2O3),Pd/TiO_(2)exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content.Pd/TiO_(2)prepared by the deposition method leads to high Pd dispersion,which are the key factors for efficient BPF degradation.The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed.Density functional theory(DFT)calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles.The catalytic activities are strongly dependent on the structural features of the catalysts.Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.展开更多
The influence of electronic structure on the performance of catalysts for peroxymonosulfate(PMS)activation remains ambiguous.In this study,the 3d electron configuration of Fe(Ⅲ)in AgFeO_(2) was atomically regulated u...The influence of electronic structure on the performance of catalysts for peroxymonosulfate(PMS)activation remains ambiguous.In this study,the 3d electron configuration of Fe(Ⅲ)in AgFeO_(2) was atomically regulated using cobalt doping.The amount of PMS adsorbed and the catalytic performance were positively correlated with the total effective magnetic moment and the ratios of high-spin Fe(Ⅲ)and eg filling within the catalysts.These 3d electron regulations favor PMS adsorption and electron transfer owing to the lower PMS adsorption energy,increased electronic states near the Fermi level,and reduced dz^(2) orbital occupancy.Benefiting from fine tailoring of the electron configuration,the AgFe_(0.80)Co_(0.20)O_(2) catalyst exhibited outstanding catalytic PMS activation and favorable application potential,achieving efficient pharmaceutical wastewater treatment and more than 80%ofloxacin removal after 72 h of continuous-flow operation.Notably,this study offers a comprehensive understanding for the influence mechanism of electronic structure regulation on PMS activation,providing design guidance for the development of efficient heterogeneous Fenton-like catalytic systems.展开更多
Rational tuning of crystallographic surface and metal doping were effective to enhance the catalytic performance of metal organic frameworks,but limited work has been explored for achieving modulation of crystal facet...Rational tuning of crystallographic surface and metal doping were effective to enhance the catalytic performance of metal organic frameworks,but limited work has been explored for achieving modulation of crystal facets and metal doping in a single system.MIL-68(In)was promising for photocatalytic applications due to its low toxicity and excellent photoresponsivity.However,its catalytic activity was constrained by severe carrier recombination and a lack of active sites.Herein,increased(001)facet ratio and active sites exposure were simultaneously realized by cobalt doping in MIL-68(In)through a one-pot solvothermal strategy.Optimized MIL-68(In/Co)-2.5 exhibited remarkable catalytic performance in comparison with pristine MIL-68(In)and other MIL-68(In/Co).The reaction kinetic constant and degradation efficiency of MIL-68(In/Co)were approximately twice and 17%higher than the pristine MIL-68(In)in 36 min reaction,respectively.Density functional theory calculations revealed that Co dopant could modulate the orientation of MIL-68(In)facets,facilitate the exchange of electrons and reduce the adsorption energy of peroxymonosulfate(PMS).This work provides a novel pathway for improvement of In-based MOFs in PMS/vis system,it also promotes the profound comprehension of the correlation between crystal facet regulation and catalytic activation in the PMS/vis system.展开更多
An efficient catalytic system was developed to remove various organic pollutants by simultaneously using low-level cobalt ions,calcium carbonate micro-particles and peroxymonosulfate(PMS).A simple base-induced precipi...An efficient catalytic system was developed to remove various organic pollutants by simultaneously using low-level cobalt ions,calcium carbonate micro-particles and peroxymonosulfate(PMS).A simple base-induced precipitation was used to successfully loaded Co-centered reactive sites onto the surface of CaCO_(3)microparticles.Under optimal conditions at 25°C,10 mg/L methylene blue(MB)could be completely degraded within 10 min with 480μg/L Co^(2+),0.4 g/L CaCO_(3)microparticles(or 0.4 g/L Co@CaCO_(3))and 0.1 g/L PMS.The MB degradation followed the pseudo first order kinetics with a rate constant of 0.583 min^(−1),being 8.3,11.5 and 53.0 times that by using Co-OH(0.07 min^(−1)),Co^(2+)(0.044 min^(−1))and CaCO_(3)(0.011 min^(−1))as the catalyst,respectively.It was confirmed that there was a synergistic effect in the catalytic activity between Co species and the CaCO_(3)particles but the major contributor was the highly dispersed Co species.When Co^(2+)-containing simulated electroplating wastewater was used as the Co^(2+)source,not only the added MB was also completely degraded within 5 min in this catalytic system,but also the coexisting heavy metal ions were substantially removed.The presently developed method was applied to simultaneously treat organic wastewater and heavy metals wastewater.The present method was also successfully used to efficiently degrade other organic pollutants including bisphenol A,sulfamethoxazole,rhodamine B,tetrabromobisphenol A,ofloxacin and benzoic acid.A catalytic mechanism was proposed for the PMS activation by Co@CaCO_(3).The surface of CaCO_(3)particles favors the adsorption of Co^(2+).More importantly,the surface of CaCO_(3)particles provides plentiful surface-OH and-CO_(3)^(2+),and these surface groups complex with Co^(2+)to producemore catalytically active species such as surface[CoOH]^(−),resulting in rapid Co^(2+)/Co^(3+)cycling and electron transfer.These interactions cause the observed synergistic effect between Co species and CaCO_(3)particles in PMS activation.Due to good cycle stability,strong anti-interference ability and wide universality,the new method will have broad application prospects.展开更多
In this work,atomic Co catalysts are anchored on a three-dimensional(3D)interconnected g-C_(3)N_(4)(SACo-CN)through Co-N coordination,which exhibit efficient charge carrier transition and low activation energy barrier...In this work,atomic Co catalysts are anchored on a three-dimensional(3D)interconnected g-C_(3)N_(4)(SACo-CN)through Co-N coordination,which exhibit efficient charge carrier transition and low activation energy barriers for peroxymonosulfate(PMS).The incorporation of Co atoms extends the absorption spectrum and enhances the photoelectron-hole separation efficiency of the SACo-CN samples.The 3D interconnected structure,combined with the synergistic interplay between Co-N coordination and visible light irradiation,results in SACo-CN catalysts demonstrating excellent catalytic activity and stability for PMS activation.This leads to a degradation rate of 98.8%for oxytetracycline(OTC)within 30 min under visible light.The research proposes three potential mineralization pathways with eight intermediates,leading to a significant decrease in the toxicity of the intermediates.This work provides a facile and promising approach for the preparation of metal single atom catalysts with highly efficient PMS activation performance.展开更多
The degradation of organic pollutants in water is a critical environmental challenge.The iron-doped MoS_(2) catalysts have demonstrated potential in activating peroxymonosulfate(PMS)for environmental remediation,but t...The degradation of organic pollutants in water is a critical environmental challenge.The iron-doped MoS_(2) catalysts have demonstrated potential in activating peroxymonosulfate(PMS)for environmental remediation,but they face challenges such as poor conductivity,limited electron transfer efficiency,and a scarcity of active sites.To address these issues,we successfully synthesized a nano-flowers FeS/MoS_(2) composite derived from polyoxometalates(NH_(4))_(3)[Fe(III)Mo_(6)O_(24)H_(6)]⋅6H_(2)O(denoted as FeMo6)as the bimetallic precursors.This synthesis strategy enhances the interaction between FeS and MoS_(2),thereby facilitating electron transfer.Notably,the introduction of sulfur vacancies in FeS/MoS_(2) exposes additional Mo4t active sites,promoting the redox cycle of Fe^(2+)/Fe^(3+) and accelerating the regeneration of Fe^(2+),which in turn enhances PMS activation.Therefore,a catalytic oxidation system of FeS/MoS_(2)/PMS is presented that primarily relies on SO_(4)^(⋅-)and⋅OH,with ^(1)O_(2) as a supplementary oxidant.This system exhibits exceptional degradation efficiency for p-chlorophenol(4-CP),achieving 100% degradation within 10 min over a wide pH range of 2.4–8.4.The robust performance and wide applicability of FeS/MoS_(2) catalyst make it a promising candidate in advanced oxidation processes(AOPs)for environmental remediation.展开更多
The adsorption of peroxymonosulfate(PMS)is crucial for PMS activation in the heterogeneous advanced oxidation processes.However,the investigation of PMS adsorption on the piezocatalysts still remains insufficient.In t...The adsorption of peroxymonosulfate(PMS)is crucial for PMS activation in the heterogeneous advanced oxidation processes.However,the investigation of PMS adsorption on the piezocatalysts still remains insufficient.In this work,bismuth oxychloride(BiO Cl)nanosheets were prepared as the piezocatalysts for PMS activation under ultrasonic vibration to remove carbamazepine(CBZ)in aqueous solutions.Up to92.5%of CBZ was degraded for 40 min in Bi OCl piezo-activated PMS system with the reaction rate constant of 0.0741 min-1,being 1.63 times that of the sum of BiOCl piezocatalysis,BiOCl-activated PMS,and vibration-activated PMS.PMS adsorption on the surface of BiOCl was specifically studied by comparing the microscopic structure change of the fresh and used Bi OCl.The results suggested that the piezoelectric field of Bi OCl was able to promote the tight adsorption of PMS on the surface,thus facilitating the fast activation of PMS through electrons transfer to produce reactive species(HO·,SO_(4)·-,O_(2)·-,1O_(2)).This work presents an in-depth understanding for the role of piezoelectric effect on the adsorption and activation of PMS.展开更多
Switching the reaction routes in peroxymonosulfate(PMS)-based advanced oxidation processes have attracted much attention but remain challenging.Herein,a series of Co-N/C catalysts with different compositions and struc...Switching the reaction routes in peroxymonosulfate(PMS)-based advanced oxidation processes have attracted much attention but remain challenging.Herein,a series of Co-N/C catalysts with different compositions and structures were prepared by using bimetallic zeolitic imidazolate frameworks based on ZIF-8 and ZIF-67(x Zn/Co-ZIFs).Results show that Co doping amount could mediate the transformation of the activation pathway of PMS over CoN/C.When Co doping amount was less than 10%,the constructed x Co-N/C/PMS system(x≤10%)was singlet oxygen-dominated reaction;however further increasing Co doping amount would lead to the generation and coexistence of sulfate radicals and high-valent cobalt,besides singlet oxygen.Furthermore,the nitrogen-coordinated Co(Co-NX)sites could serve as main catalytically active sites to generate singlet oxygen.While excess Co doping amount caused the formation of Co nanoparticles from which leached Co ions were responsible for the generation of sulfate radicals and high-valent cobalt.Compared to undoped N/C,Co doping could significantly enhance the catalytic performance.The 0.5%Co-N/C could achieve the optimum degradation(0.488 min^(-1))and mineralization abilities(78.4%)of sulfamethoxazole among the investigated Co-N/C catalysts,which was superior to most of previously reported catalysts.In addition,the application prospects of the two systems in different environmental scenarios(pH,inorganic anions and natural organic matter)were assessed and showed different degradation behaviors.This study provides a strategy to regulate the reactive species in PMS-based advanced oxidation process.展开更多
Photocatalytic activation of peroxymonosulfate (PMS) has garnered a lot of interest in the field of wastewater treatment. Herein, a plasmonic Ag nanoparticles decorated MIL-101(Fe) hybrid was synthesized through a pho...Photocatalytic activation of peroxymonosulfate (PMS) has garnered a lot of interest in the field of wastewater treatment. Herein, a plasmonic Ag nanoparticles decorated MIL-101(Fe) hybrid was synthesized through a photodeposition process. Upon light irradiation, the Ag/MIL-101(Fe) exhibit reinforced photocatalytic activities for elimination of bisphenol A (BPA) with PMS. The optimized 2.0% Ag/MIL-101(Fe) composite presented the highest photocatalytic activity with kinetic constant k of 0.102 min-1, which was about 10-fold of the pristine MIL-101(Fe). Loading of plasmonic Ag into MIL-101(Fe) boosts photoinduced carrier separation and accelerates PMS activation to generate strong oxidative radicals. Photoelectrochemical tests and multiple spectroscopic studies confirmed the promoted charge carrier separation and transfer capability of Ag/MIL-101(Fe). Combining the results of radical trapping experiments and electron spin resonance (ESR), the formed SO4·-, ·OH, ·O2- and 1O2 had a significant role in the photocatalytic process. According to intermediate study, the degradation pathway was studied, and the possible mechanism was proposed.展开更多
Rapid recombination of charge carriers and sluggish Cu^(2+)/Cu^(+)conversion rate in Cu-based photocatalysts hinder the improvement of the peroxymonosulfate(PMS)activation efficiency.Herein,a novel S-scheme system was...Rapid recombination of charge carriers and sluggish Cu^(2+)/Cu^(+)conversion rate in Cu-based photocatalysts hinder the improvement of the peroxymonosulfate(PMS)activation efficiency.Herein,a novel S-scheme system was successfully built through hydrothermal and in-situ calcination methods to activate PMS for norfloxacin(NOR)degradation,which combined CuO with BiVO_(4)(BVO)containing surface heterojunc-tion.The UV-vis spectra manifested that BVO displayed excellent visible light absorption performance after compounding with CuO,and the light absorption threshold of CuO/BVO was about 600 nm.Thanks to the existence of surface heterojunction in BVO,the photoinduced electrons,and holes would trans-fer to{010}and{110}facets,respectively.The construction of S-scheme heterojunction further facilitated the accumulation of electrons on CuO,thus realizing the spatial separation of charge carriers.In addi-tion,the electrons gathered on the CuO expedited the Cu^(2+)/Cu^(+)cycle,thereby improving the activation efficiency of PMS.On this basis,the NOR removal capacity of 5CuO/BVO composites was obviously en-hanced,which was 3.65 and 2.45 times that of CuO and BVO.Moreover,the influence of ambient pH and PMS dosage on the photocatalytic performance of CuO/BVO was investigated.Through the analysis of NOR degradation pathways and degradation products,it was found that the toxicity threat of NOR to the environment was reduced during the degradation process.According to the XPS results,forming the S-scheme heterojunction accelerated the Cu^(2+)/Cu^(+)redox cycle during the PMS activating process.Meanwhile,photoluminescence(PL)and time-resolved photoluminescence(TRPL)analysis demonstrated that the CuO/BVO composites exhibited eminent ability for charge separation.The possible mechanism of charge transfer was assumed by exploring reactive species and the energy band structure of catalysts.To sum up,this research provides a new perspective on boosting PMS activation to purify antibiotics in water.展开更多
Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci...Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.展开更多
The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,th...The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.展开更多
In this study,the cobalt-nickel layered double hydroxides(CoNi LDH)were synthesized with a variety of Co/Ni mass ratio,as CoxNiyLDHs.In comparison,Co1Ni3LDH presented the best peroxymonosulfate(PMS)activation efficien...In this study,the cobalt-nickel layered double hydroxides(CoNi LDH)were synthesized with a variety of Co/Ni mass ratio,as CoxNiyLDHs.In comparison,Co1Ni3LDH presented the best peroxymonosulfate(PMS)activation efficiency for 2,4-dichlorophenol removal.Meanwhile,CoNi LDH@Nickel foam(CoNi LDH@NF)composite membrane was constructed for enhancing the stability of catalytic performance.Herein,CoNi LDH@NF-PMS system exerted high degradation efficiency of 99.22%within 90 min for 2,4-DCP when[PMS]_(0)=0.4 g/L,Co^(1)Ni^(3)LDH@NF=2 cm×2 cm(0.2 g/L),reaction temperature=298 K.For the surface morphology and structure of the catalyst,it was demonstrated that the CoNi LDH@NF composite membrane possessed abundant cavity structure,good specific surface area and sufficient active sites.Importantly,·OH,SO_(4)·^(-)and^(1)O_(2)played the primary role in the CoNi LDH@NF-PMS system for 2,4-DCP decomposition,which revealed the PMS activation mechanism in CoNi LDH@NF-PMS system.Hence,this study eliminated the stability and adaptability of CoNi LDH@NF composite membrane,proposing a new theoretical basis of PMS heterogeneous catalysts selection.展开更多
The monoaminotrinitro iron phthalocyanine(FeMATNPc)is used to connect with isonicotinic acid(INA)for amide bonding and axial coordination to synthetic a unique catalyst FeMATNPc-INA,which is loaded in polyacrylonitril...The monoaminotrinitro iron phthalocyanine(FeMATNPc)is used to connect with isonicotinic acid(INA)for amide bonding and axial coordination to synthetic a unique catalyst FeMATNPc-INA,which is loaded in polyacrylonitrile(PAN)nanofibers by electrospinning.The introduction of INA destroys theπ-πconjugated stack structure in phthalocyanine molecules and exposes more active sites.The FeMATNPc-INA structure is characterized by X-ray photoelectron spectroscopy and UV-visible absorption spectrum,and the FeMATNPcINA/PAN structure is characterized by Fourier transform infrared spectroscopy and X-ray diffraction.The FeMATNPc-INA/PAN can effectively activate peroxymonosulfate(PMS)to eliminate carbamazepine(CBZ)within 40 minutes(PMS 1.5 mmol/L)in the dark.The effects of catalyst dosage,PMS concentration,pH and inorganic anion on the degradation of CBZ are investigated.It has been confirmed by electron paramagnetic resonance,gas chromatography–mass spectroscopy and free radical capture experiments that the catalytic system is degraded by·OH,SO4^(·-)and Fe(IV)=O are the major active species,the singlet oxygen(^(1)O_(2))is the secondary active species.The degradation process of CBZ is analyzed by ultra-high performance liquid chromatography-mass spectrometry and the aromatic compounds have been degraded to small molecular acids.展开更多
Environmental endocrine disruptors,represented by bisphenol A(BPA),have been widely detected in the environment,bringing potential health risks to human beings.Nitrogen-containing biocarbon catalyst can activate perox...Environmental endocrine disruptors,represented by bisphenol A(BPA),have been widely detected in the environment,bringing potential health risks to human beings.Nitrogen-containing biocarbon catalyst can activate peroxymonosulfate(PMS)to degrade BPA in water,but its active sites remain opaque.Herein,in this work,nitrogen-containing biochar,i.e.,C–Nedge,enriched with graphitic-N defects at the edges was prepared by one-pot co-pyrolysis of chitosan and potassium carbonate.The results showed that the C–Nedge/PMS system can effectively degrade 98%of BPA(50 mg/L).The electron transfer based non-radical oxidation mechanism was responsible for BPA degradation.Edge graphitic-N doping endows biochar with strong electron transfer ability.The catalyst had good recovery and reuse performance.This catalytic oxidation was also feasible for other refractory pollutants removal and worked well for treating practical wastewater.This work may provide valuable information in unraveling the N doping configurationactivity relationship during activating PMS by biochar.展开更多
基金supported by the Sichuan Science and Technology Program(No.2021YJ0385)the Project in Yangtze River Ecological Environment Protection and Restoration(No.2022-LHYJ-02-0509-08).
文摘Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu(Ⅱ)/Cu(Ⅰ)and Fe(Ⅲ)/Fe(Ⅱ)cycles.Innovatively,we observed a significant enhancement on the degradation of organic contaminants when Cu(Ⅱ)and Fe(Ⅲ)were coupled to activate PMS in borate(BA)buffer.The degradation efficiency of Rhodamine B(RhB,20μmol/L)reached up to 96.3%within 10 min,which was higher than the sum of individual Cu(Ⅱ)-and Fe(Ⅲ)-activated PMS process.Sulfate radical,hydroxyl radical and high-valent metal ions(i.e.,Cu(Ⅲ)and Fe(IV))were identified as the working reactive species for RhB removal in Cu(Ⅱ)/Fe(Ⅲ)/PMS/BA system,while the last played a predominated role.The presence of BA dramatically facilitated the reduction of Cu(Ⅱ)to Cu(Ⅰ)via chelating with Cu(Ⅱ)followed by Fe(Ⅲ)reduction by Cu(Ⅰ),resulting in enhanced PMS activation by Cu(Ⅰ)and Fe(Ⅱ)as well as accelerated generation of reactive species.Additionally,the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(Ⅱ)and Fe(Ⅲ).In a word,this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.
基金University Synergy Innovation Program of Anhui Province(GXXT-2022-083)Science and Technology Plan Project of Wuhu City,China(2023kx12)Anhui Provincial Department of Education New Era Education Project(2023xscx070)。
文摘Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.
基金supported by the Natural Science Foundation Project of Jilin Province(Nos.20230101297JC,YDZJ202201ZYTS347,YDZJ202101ZYTS073,20210101117JC,YDZJ202201ZYTS349,YDZJ202102CXJD049)the National Natural Science Foundation(22004047)+4 种基金China Postdoctoral Science Foundation(No.2023M731299)the Project of Jilin Province Development and Reform Commission(Nos.2023C032-5,2023C032-4,2023C032-2)the Project of Human Resources and Social Security Department of Jilin Province(No.2023337)the National College students’innovation and entrepreneurship training program(No.202310203008)the Project of Education Department of Jilin Province(Nos.JJKH20220429KJ,JJKH20210460KJ).
文摘Integrating photocatalysis technology with peroxymonosulfate oxidation possesses huge potential for degrading stubborn pollutant.Herein,a porous ultra-thin carbon nitride with C-defect O-doping and advanced n-π^(∗)transition was customized by one-pot thermalinduced polymerization of molten urea assisted with paraformaldehyde.Via visible-light coupling peroxymonosulfate activation,the DCN-100 can completely photodegrade 2,4-dichlorophenol,and rate constant is 136.6 and 37.9 times that of CN and DCN-100 without peroxymonosulfate.The light-absorption of DCN-100 surpasses 550 nm,specific surface area rises from 45.03 to 98.58m^(2)/g,and charge behaviors are significantly improved.The effects of paraformaldehyde amount,PMS dosage,pH,2,4-dichlorophenol concentration,different water-body,wavelength and recycling times on photodegradation performance were explored in detail.Via capture experiments,ESR,LC-MS,Fukui-function,TEXT toxicity assessment and DFT theoretical calculation,themain active substances,degradation pathway,intermediate toxicity and enhanced activity mechanism of DCN-100 were clarified.The research provides a cost-effective,high-efficiency and environmental-friendly photocatalysts to activate peroxymonosulfate for water remediating.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC3703103)National Natural Science Foundation of China(Nos.22206053,42277427)the Guangzhou Science and Technology Plan Project(No.2024A04J4058)。
文摘Bisphenol A(BPA)has threatened ecological safety and human health due to its endocrine disrupting effect and widely diffused in the environment.Peroxymonosulfate(PMS)based on oxidation technology exhibits good potential for environmental remediation whereas the highly efficient activator needs to be developed.Herein,the Bi OBr(BOB)was synthesized to efficiently activate PMS to remove 95.6%of BPA within 60 min.The observed rate constant of BPA removal in BOB/PMS system is 0.049 min^(-1),which is 60 and 148 times to that of the BOB and PMS processes separately and 129 times to the compared Bi OCl(BOC)/PMS system,respectively.Comparison experiments and analytic methods demonstrate that BOB with a larger content of oxygen vacancies(Ov)can act as the bridge of electron transfer between Bi^(3+)/Bi^(4+)with PMS to enhance the activation ability for PMS,resulting in the production of abundant reactive oxygen species(O_(2)^(·-)and ^(1)O_(2)).Additionally,the breakdown processes of BPA and the toxicity of its byproducts were uncovered,and the potential for actual water treatment was evaluated to confirm the detoxification,efficiency,stability and practical use of the BOB/PMS system for eliminating BPA.This study may widen the application of traditional semiconductors and develop the cost-effective PMS activation methods for environmental remediation.
基金the financial support from Sichuan Science and Technology Program(No.2023NSFSC0847)Scientific Research and Innovation Team Program of Sichuan University of Science and Technology(No.SUSE652A003)+3 种基金Talent Introduction Project of Sichuan University of Science and Engineering(No.2021RC03)Talent Introduction Project of Sichuan University of Science and Engineering(No.2021RC05)the Undergraduate Training Program for Innovation and Entrepreneurship(No.CX2024042)The Innovation Fund of Postgraduate,Sichuan University of Science&Engineering(No.Y2024094)。
文摘N-doped graphite carbon sphere coated cobalt nanoparticle catalyst(Co@C-N-900),prepared by solvothermal-calcination method,is applied to activate peroxymonosulfate(PMS)for bisphenol A(BPA)elimination.The outcomes demonstrate that the Co@C-N-900 could effectively activate PMS,thereby causing efficient removal of BPA in water.In addition,the Co@C-N-900/PMS system also has the advantages of low metal leaching,applicability in high salinity environments,good selectivity and stability.Further investigations using electron paramagnetic resonance,chronoamperometry,and quenching experiments demonstrated that the Co@C-N-900/PMS system is a typical non-radical route with singlet oxygen(^(1)O_(2))as the main reactive oxygen species(ROS).Density functional theory calculations(DFT)indicate that N-doping can effectively regulate the charge distribution on the catalyst surface,generating acidic/alkaline sites favorable for PMS adsorption and activation.Furthermore,it also can enhance the interaction and charge transfer capacity between the Co@C-N-900 and PMS.Lastly,LC-QTOF-MS/MS analysis revealed two possible BPA degradation pathways:(1)^(1)O_(2)attacked the isopropyl group in BPA between the two phenyl groups,causingβ-scission to occur.(2)Following the oxidation of the hydroxyl group in the aromatic ring of BPA,^(1)O_(2)could cause furtherβ-scission.The prepared Co@C-N-900 catalyst is a very promising catalyst,which would offer a workable remedy for treating water pollution.
基金supported by the National Natural Science Foundation of China(NSFC)(No.21978137).
文摘In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_(2),Pd/CeO_(2),Pd/TiO_(2)and Pd/Al2O3),Pd/TiO_(2)exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content.Pd/TiO_(2)prepared by the deposition method leads to high Pd dispersion,which are the key factors for efficient BPF degradation.The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed.Density functional theory(DFT)calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles.The catalytic activities are strongly dependent on the structural features of the catalysts.Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.
文摘The influence of electronic structure on the performance of catalysts for peroxymonosulfate(PMS)activation remains ambiguous.In this study,the 3d electron configuration of Fe(Ⅲ)in AgFeO_(2) was atomically regulated using cobalt doping.The amount of PMS adsorbed and the catalytic performance were positively correlated with the total effective magnetic moment and the ratios of high-spin Fe(Ⅲ)and eg filling within the catalysts.These 3d electron regulations favor PMS adsorption and electron transfer owing to the lower PMS adsorption energy,increased electronic states near the Fermi level,and reduced dz^(2) orbital occupancy.Benefiting from fine tailoring of the electron configuration,the AgFe_(0.80)Co_(0.20)O_(2) catalyst exhibited outstanding catalytic PMS activation and favorable application potential,achieving efficient pharmaceutical wastewater treatment and more than 80%ofloxacin removal after 72 h of continuous-flow operation.Notably,this study offers a comprehensive understanding for the influence mechanism of electronic structure regulation on PMS activation,providing design guidance for the development of efficient heterogeneous Fenton-like catalytic systems.
基金supported by the National Natural Science Foundation of China(Nos.52100087,52170079,U20A20322)Science and Technology Development Program of Jilin Province,China(Nos.20220508100RC,20230402035GH).
文摘Rational tuning of crystallographic surface and metal doping were effective to enhance the catalytic performance of metal organic frameworks,but limited work has been explored for achieving modulation of crystal facets and metal doping in a single system.MIL-68(In)was promising for photocatalytic applications due to its low toxicity and excellent photoresponsivity.However,its catalytic activity was constrained by severe carrier recombination and a lack of active sites.Herein,increased(001)facet ratio and active sites exposure were simultaneously realized by cobalt doping in MIL-68(In)through a one-pot solvothermal strategy.Optimized MIL-68(In/Co)-2.5 exhibited remarkable catalytic performance in comparison with pristine MIL-68(In)and other MIL-68(In/Co).The reaction kinetic constant and degradation efficiency of MIL-68(In/Co)were approximately twice and 17%higher than the pristine MIL-68(In)in 36 min reaction,respectively.Density functional theory calculations revealed that Co dopant could modulate the orientation of MIL-68(In)facets,facilitate the exchange of electrons and reduce the adsorption energy of peroxymonosulfate(PMS).This work provides a novel pathway for improvement of In-based MOFs in PMS/vis system,it also promotes the profound comprehension of the correlation between crystal facet regulation and catalytic activation in the PMS/vis system.
基金supported by the National Natural Science Foundation of China(Nos.22076052 and 21976063)China Postdoctoral Science Foundation(No.2018M642850)the Research Funding of Wuhan Polytechnic University(No.2023RZ017).
文摘An efficient catalytic system was developed to remove various organic pollutants by simultaneously using low-level cobalt ions,calcium carbonate micro-particles and peroxymonosulfate(PMS).A simple base-induced precipitation was used to successfully loaded Co-centered reactive sites onto the surface of CaCO_(3)microparticles.Under optimal conditions at 25°C,10 mg/L methylene blue(MB)could be completely degraded within 10 min with 480μg/L Co^(2+),0.4 g/L CaCO_(3)microparticles(or 0.4 g/L Co@CaCO_(3))and 0.1 g/L PMS.The MB degradation followed the pseudo first order kinetics with a rate constant of 0.583 min^(−1),being 8.3,11.5 and 53.0 times that by using Co-OH(0.07 min^(−1)),Co^(2+)(0.044 min^(−1))and CaCO_(3)(0.011 min^(−1))as the catalyst,respectively.It was confirmed that there was a synergistic effect in the catalytic activity between Co species and the CaCO_(3)particles but the major contributor was the highly dispersed Co species.When Co^(2+)-containing simulated electroplating wastewater was used as the Co^(2+)source,not only the added MB was also completely degraded within 5 min in this catalytic system,but also the coexisting heavy metal ions were substantially removed.The presently developed method was applied to simultaneously treat organic wastewater and heavy metals wastewater.The present method was also successfully used to efficiently degrade other organic pollutants including bisphenol A,sulfamethoxazole,rhodamine B,tetrabromobisphenol A,ofloxacin and benzoic acid.A catalytic mechanism was proposed for the PMS activation by Co@CaCO_(3).The surface of CaCO_(3)particles favors the adsorption of Co^(2+).More importantly,the surface of CaCO_(3)particles provides plentiful surface-OH and-CO_(3)^(2+),and these surface groups complex with Co^(2+)to producemore catalytically active species such as surface[CoOH]^(−),resulting in rapid Co^(2+)/Co^(3+)cycling and electron transfer.These interactions cause the observed synergistic effect between Co species and CaCO_(3)particles in PMS activation.Due to good cycle stability,strong anti-interference ability and wide universality,the new method will have broad application prospects.
基金financial support from the National Natural Science Foundation of China(Nos.22276159,J2224005)the Key research project plan for higher education institutions of Henan province(No.24ZX009)+1 种基金the Development Program for Key Young Teachers in Colleges and Universities of Henan Province(No.2020GGJS146)the Starting Research Fund of Xinxiang Medical University(No.XYBSKYZZ201911)。
文摘In this work,atomic Co catalysts are anchored on a three-dimensional(3D)interconnected g-C_(3)N_(4)(SACo-CN)through Co-N coordination,which exhibit efficient charge carrier transition and low activation energy barriers for peroxymonosulfate(PMS).The incorporation of Co atoms extends the absorption spectrum and enhances the photoelectron-hole separation efficiency of the SACo-CN samples.The 3D interconnected structure,combined with the synergistic interplay between Co-N coordination and visible light irradiation,results in SACo-CN catalysts demonstrating excellent catalytic activity and stability for PMS activation.This leads to a degradation rate of 98.8%for oxytetracycline(OTC)within 30 min under visible light.The research proposes three potential mineralization pathways with eight intermediates,leading to a significant decrease in the toxicity of the intermediates.This work provides a facile and promising approach for the preparation of metal single atom catalysts with highly efficient PMS activation performance.
基金financially supported by the National Natural Science Foundation of China(52063024 and 51868052)the Natural Science Foundation of Jiangxi Province(20192ACBL21046)the National Science Foundation of State Key Laboratory of Structural Chemistry(20160013).
文摘The degradation of organic pollutants in water is a critical environmental challenge.The iron-doped MoS_(2) catalysts have demonstrated potential in activating peroxymonosulfate(PMS)for environmental remediation,but they face challenges such as poor conductivity,limited electron transfer efficiency,and a scarcity of active sites.To address these issues,we successfully synthesized a nano-flowers FeS/MoS_(2) composite derived from polyoxometalates(NH_(4))_(3)[Fe(III)Mo_(6)O_(24)H_(6)]⋅6H_(2)O(denoted as FeMo6)as the bimetallic precursors.This synthesis strategy enhances the interaction between FeS and MoS_(2),thereby facilitating electron transfer.Notably,the introduction of sulfur vacancies in FeS/MoS_(2) exposes additional Mo4t active sites,promoting the redox cycle of Fe^(2+)/Fe^(3+) and accelerating the regeneration of Fe^(2+),which in turn enhances PMS activation.Therefore,a catalytic oxidation system of FeS/MoS_(2)/PMS is presented that primarily relies on SO_(4)^(⋅-)and⋅OH,with ^(1)O_(2) as a supplementary oxidant.This system exhibits exceptional degradation efficiency for p-chlorophenol(4-CP),achieving 100% degradation within 10 min over a wide pH range of 2.4–8.4.The robust performance and wide applicability of FeS/MoS_(2) catalyst make it a promising candidate in advanced oxidation processes(AOPs)for environmental remediation.
基金financially supported by the National Natural Science Foundation of China(No.22006052)the Science and Technology Program of Guangzhou,China(No.202201020545)。
文摘The adsorption of peroxymonosulfate(PMS)is crucial for PMS activation in the heterogeneous advanced oxidation processes.However,the investigation of PMS adsorption on the piezocatalysts still remains insufficient.In this work,bismuth oxychloride(BiO Cl)nanosheets were prepared as the piezocatalysts for PMS activation under ultrasonic vibration to remove carbamazepine(CBZ)in aqueous solutions.Up to92.5%of CBZ was degraded for 40 min in Bi OCl piezo-activated PMS system with the reaction rate constant of 0.0741 min-1,being 1.63 times that of the sum of BiOCl piezocatalysis,BiOCl-activated PMS,and vibration-activated PMS.PMS adsorption on the surface of BiOCl was specifically studied by comparing the microscopic structure change of the fresh and used Bi OCl.The results suggested that the piezoelectric field of Bi OCl was able to promote the tight adsorption of PMS on the surface,thus facilitating the fast activation of PMS through electrons transfer to produce reactive species(HO·,SO_(4)·-,O_(2)·-,1O_(2)).This work presents an in-depth understanding for the role of piezoelectric effect on the adsorption and activation of PMS.
基金supported by the National Natural Science Foundation of China(Nos.52100081,51978178,and 51521006)the Department of Science and Technology of Guangdong Province of China(Nos.2021A1515011797,2023A1515012062,2019A1515012044,and 2022A1515010226)+4 种基金the Department of Education of Guangdong Province of China(No.2021KTSCX078)the Program for Innovative Research Teams of Guangdong Higher Education Institutes of China(No.2021KCXTD043)Maoming Municipal Department of Science and Technology of Guangdong Province of China(No.2018S0013)the Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes(No.2017KSYS004)the Startup Fund of GDUPT(Nos.2018rc63 and 2020rc041)。
文摘Switching the reaction routes in peroxymonosulfate(PMS)-based advanced oxidation processes have attracted much attention but remain challenging.Herein,a series of Co-N/C catalysts with different compositions and structures were prepared by using bimetallic zeolitic imidazolate frameworks based on ZIF-8 and ZIF-67(x Zn/Co-ZIFs).Results show that Co doping amount could mediate the transformation of the activation pathway of PMS over CoN/C.When Co doping amount was less than 10%,the constructed x Co-N/C/PMS system(x≤10%)was singlet oxygen-dominated reaction;however further increasing Co doping amount would lead to the generation and coexistence of sulfate radicals and high-valent cobalt,besides singlet oxygen.Furthermore,the nitrogen-coordinated Co(Co-NX)sites could serve as main catalytically active sites to generate singlet oxygen.While excess Co doping amount caused the formation of Co nanoparticles from which leached Co ions were responsible for the generation of sulfate radicals and high-valent cobalt.Compared to undoped N/C,Co doping could significantly enhance the catalytic performance.The 0.5%Co-N/C could achieve the optimum degradation(0.488 min^(-1))and mineralization abilities(78.4%)of sulfamethoxazole among the investigated Co-N/C catalysts,which was superior to most of previously reported catalysts.In addition,the application prospects of the two systems in different environmental scenarios(pH,inorganic anions and natural organic matter)were assessed and showed different degradation behaviors.This study provides a strategy to regulate the reactive species in PMS-based advanced oxidation process.
基金Natural Science Foundation of Hebei Province, China (No. B2020202044)the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, China (No. KLIEEE-21-04).
文摘Photocatalytic activation of peroxymonosulfate (PMS) has garnered a lot of interest in the field of wastewater treatment. Herein, a plasmonic Ag nanoparticles decorated MIL-101(Fe) hybrid was synthesized through a photodeposition process. Upon light irradiation, the Ag/MIL-101(Fe) exhibit reinforced photocatalytic activities for elimination of bisphenol A (BPA) with PMS. The optimized 2.0% Ag/MIL-101(Fe) composite presented the highest photocatalytic activity with kinetic constant k of 0.102 min-1, which was about 10-fold of the pristine MIL-101(Fe). Loading of plasmonic Ag into MIL-101(Fe) boosts photoinduced carrier separation and accelerates PMS activation to generate strong oxidative radicals. Photoelectrochemical tests and multiple spectroscopic studies confirmed the promoted charge carrier separation and transfer capability of Ag/MIL-101(Fe). Combining the results of radical trapping experiments and electron spin resonance (ESR), the formed SO4·-, ·OH, ·O2- and 1O2 had a significant role in the photocatalytic process. According to intermediate study, the degradation pathway was studied, and the possible mechanism was proposed.
基金the financial support of this work from the National Natural Science Foundation of China(Grant No.22172064)National Laboratory of Solid State Microstructures,Nanjing University(Grant No.M34047)+1 种基金Project of Wuxi Science and Technology Development Fund(Grant No.Y20212004)Prof.Haifeng Shi was indebted to the financial support from the Qing Lan Project of Jiangsu Province.
文摘Rapid recombination of charge carriers and sluggish Cu^(2+)/Cu^(+)conversion rate in Cu-based photocatalysts hinder the improvement of the peroxymonosulfate(PMS)activation efficiency.Herein,a novel S-scheme system was successfully built through hydrothermal and in-situ calcination methods to activate PMS for norfloxacin(NOR)degradation,which combined CuO with BiVO_(4)(BVO)containing surface heterojunc-tion.The UV-vis spectra manifested that BVO displayed excellent visible light absorption performance after compounding with CuO,and the light absorption threshold of CuO/BVO was about 600 nm.Thanks to the existence of surface heterojunction in BVO,the photoinduced electrons,and holes would trans-fer to{010}and{110}facets,respectively.The construction of S-scheme heterojunction further facilitated the accumulation of electrons on CuO,thus realizing the spatial separation of charge carriers.In addi-tion,the electrons gathered on the CuO expedited the Cu^(2+)/Cu^(+)cycle,thereby improving the activation efficiency of PMS.On this basis,the NOR removal capacity of 5CuO/BVO composites was obviously en-hanced,which was 3.65 and 2.45 times that of CuO and BVO.Moreover,the influence of ambient pH and PMS dosage on the photocatalytic performance of CuO/BVO was investigated.Through the analysis of NOR degradation pathways and degradation products,it was found that the toxicity threat of NOR to the environment was reduced during the degradation process.According to the XPS results,forming the S-scheme heterojunction accelerated the Cu^(2+)/Cu^(+)redox cycle during the PMS activating process.Meanwhile,photoluminescence(PL)and time-resolved photoluminescence(TRPL)analysis demonstrated that the CuO/BVO composites exhibited eminent ability for charge separation.The possible mechanism of charge transfer was assumed by exploring reactive species and the energy band structure of catalysts.To sum up,this research provides a new perspective on boosting PMS activation to purify antibiotics in water.
基金supported by the National Natural Science Foundation of China(Nos.21972073,22136003,22206188,and 21805166).
文摘Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.
基金gratefully acknowledge the financial support of the National Natural Science Foundation of China(22108145 and 21978143)the Shandong Province Natural Science Foundation(ZR2020QB189)+1 种基金State Key Laboratory of Heavy Oil Processing(SKLHOP202203008)the Talent Foundation funded by Province and Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering(STHGYX2201).
文摘The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C733)the Open Project of Key Disciplines of Physics(No.XJZDXKphy202309)the Research and Innovation Team Cultivation Program of Yili Normal University(No.CXZK2021004)。
文摘In this study,the cobalt-nickel layered double hydroxides(CoNi LDH)were synthesized with a variety of Co/Ni mass ratio,as CoxNiyLDHs.In comparison,Co1Ni3LDH presented the best peroxymonosulfate(PMS)activation efficiency for 2,4-dichlorophenol removal.Meanwhile,CoNi LDH@Nickel foam(CoNi LDH@NF)composite membrane was constructed for enhancing the stability of catalytic performance.Herein,CoNi LDH@NF-PMS system exerted high degradation efficiency of 99.22%within 90 min for 2,4-DCP when[PMS]_(0)=0.4 g/L,Co^(1)Ni^(3)LDH@NF=2 cm×2 cm(0.2 g/L),reaction temperature=298 K.For the surface morphology and structure of the catalyst,it was demonstrated that the CoNi LDH@NF composite membrane possessed abundant cavity structure,good specific surface area and sufficient active sites.Importantly,·OH,SO_(4)·^(-)and^(1)O_(2)played the primary role in the CoNi LDH@NF-PMS system for 2,4-DCP decomposition,which revealed the PMS activation mechanism in CoNi LDH@NF-PMS system.Hence,this study eliminated the stability and adaptability of CoNi LDH@NF composite membrane,proposing a new theoretical basis of PMS heterogeneous catalysts selection.
基金supported by National Natural Science Foundation of China (No.22006136)。
文摘The monoaminotrinitro iron phthalocyanine(FeMATNPc)is used to connect with isonicotinic acid(INA)for amide bonding and axial coordination to synthetic a unique catalyst FeMATNPc-INA,which is loaded in polyacrylonitrile(PAN)nanofibers by electrospinning.The introduction of INA destroys theπ-πconjugated stack structure in phthalocyanine molecules and exposes more active sites.The FeMATNPc-INA structure is characterized by X-ray photoelectron spectroscopy and UV-visible absorption spectrum,and the FeMATNPcINA/PAN structure is characterized by Fourier transform infrared spectroscopy and X-ray diffraction.The FeMATNPc-INA/PAN can effectively activate peroxymonosulfate(PMS)to eliminate carbamazepine(CBZ)within 40 minutes(PMS 1.5 mmol/L)in the dark.The effects of catalyst dosage,PMS concentration,pH and inorganic anion on the degradation of CBZ are investigated.It has been confirmed by electron paramagnetic resonance,gas chromatography–mass spectroscopy and free radical capture experiments that the catalytic system is degraded by·OH,SO4^(·-)and Fe(IV)=O are the major active species,the singlet oxygen(^(1)O_(2))is the secondary active species.The degradation process of CBZ is analyzed by ultra-high performance liquid chromatography-mass spectrometry and the aromatic compounds have been degraded to small molecular acids.
基金National Natural Science Foundation of China(No.51908172)“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2023C03149)。
文摘Environmental endocrine disruptors,represented by bisphenol A(BPA),have been widely detected in the environment,bringing potential health risks to human beings.Nitrogen-containing biocarbon catalyst can activate peroxymonosulfate(PMS)to degrade BPA in water,but its active sites remain opaque.Herein,in this work,nitrogen-containing biochar,i.e.,C–Nedge,enriched with graphitic-N defects at the edges was prepared by one-pot co-pyrolysis of chitosan and potassium carbonate.The results showed that the C–Nedge/PMS system can effectively degrade 98%of BPA(50 mg/L).The electron transfer based non-radical oxidation mechanism was responsible for BPA degradation.Edge graphitic-N doping endows biochar with strong electron transfer ability.The catalyst had good recovery and reuse performance.This catalytic oxidation was also feasible for other refractory pollutants removal and worked well for treating practical wastewater.This work may provide valuable information in unraveling the N doping configurationactivity relationship during activating PMS by biochar.