期刊文献+
共找到477篇文章
< 1 2 24 >
每页显示 20 50 100
Selenium Regulation of Selenium-dependent Glutathione Peroxidases in Animals and Transfected CHO Cells 被引量:3
1
作者 ROGER A. SUNDE BRITTA M. THOMPSON +3 位作者 MELANIE D. PALM SHERRI L.WEISS KEVIN M. THOMPSON AND JACQUELINE K. EVENSON(Nutritional Sciences Program and Department of Biochemistry,University of Missouri, Columbia MO 65211 USA) 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1997年第2期346-355,共10页
Glutathione peroxidase (GPX1) was the first identified selenium-dependent enzyme, and this enzyme has been most useful as a biochemical indicator of selenium (Se) status and the parameter of choice for determining Se ... Glutathione peroxidase (GPX1) was the first identified selenium-dependent enzyme, and this enzyme has been most useful as a biochemical indicator of selenium (Se) status and the parameter of choice for determining Se requirements. We have continued to study Se regulation of GPX1 to better understand the underlying mechanism and to gain insight into how cells themselves regulate nutrient status. In progressive Se deficiency in rats, GPX1 activity,protein and mRNA all decrease in a dramatic, coordinated and exponential fashion such that Se-deficient GPX1 mRNA levels are 6-15% of Sexadequate levels. mRNA levels for other Sedependent proteins are far less decreased in the same animals. The mRNA levels for a second Se-dependent peroxidase, phospholipid hydroperoxide glutathione peroxidase (GPX4 ), are little affected by Se deficiency, demonstrating that Se regulation of GPX1 is unique. Se regulation of GPX1 activity in growing male and female rats shows that the Se requirernent is 100 ng/g diet, based on liver GPX1 activity; use of GPX1 mRNA as the parameter indicates that the Se requirement is nearer to 50 ng Se/g diet in both male and female rats. This approach will readily detect an altered dietary Se requirement, as shown by the incremental increases in dietary Se requirement by 150, 100 or 50 ng Se/g diet in Seudeficient rat pups repleted with Se for 3, 7 or 14 d, respectively. Studies with CHO cells stably transfected with recombinant GPX1 also show that overexpression of GPX1 does not alter the minimum level of media Se necessary for Se-adequate levels of GPX1 activity or mRNA. We hypothesize that classical GPX1 has an integral biological role in the mechanism used by cells to regulate Se status,making GPX1 an especially useful and effective parameter for determining Se requirements in animals 展开更多
关键词 GPX mRNA Selenium Regulation of Selenium-dependent Glutathione peroxidases in Animals and Transfected CHO Cells CHO
暂未订购
Association between Serum Glutathione Peroxidases and Superoxide Dismutases mRNA Level with Coronary Artery Disease
2
作者 Ali Reza Abaspour Mohammad Taghikhani +8 位作者 Mohamad Reza Parizade Mohsen Moohebati Fahime Ghafoori Mehraneh Mehramiz Maryam Tayefi Amir Avan Marzeye Ghalandari Gordon A. A. Ferns Majid Ghayour-Mobarhan 《Health》 2017年第2期252-260,共9页
Background: Oxidative stress plays a crucial role in the pathogenesis and progression of many diseases, including cardiovascular disease (CVD) and diabetes mellitus. Oxidative stress results from an imbalance between ... Background: Oxidative stress plays a crucial role in the pathogenesis and progression of many diseases, including cardiovascular disease (CVD) and diabetes mellitus. Oxidative stress results from an imbalance between free radical formation and the protective antioxidant mechanisms. The latter mechanisms include superoxide dismutases (SODs) and glutathione peroxidases (GPx) that scavenge excessive ROS and protect cells against excess ROS production. The aim of current study was to determine the serum levels of SOD and serum GPx mRNA as well as the serum prooxidant-antioxidant balance in CVD patients. Method: A total of 103 subjects were recruited, with ≥50% stenosis (Angio+) or –). The expression levels of SOD and GPx in serum were measured using real time PCR. Biochemical-analyses (e.g., triglycerides;high-density lipo-protein cholesterol;low-density lipoprotein cholesterol;fasting-blood-glucose) were determined in all the subjects. Associations of SOD and GPx levels with biochemical and anthropometric characteristics were assessed together with evaluation of the serum pro-oxidant-antioxidant balance (PAB). Results: CVD subjects had a significantly higher level of fasting blood glucose (FBG), TC, LDL-C, TG and hs-CRP levels, as compared to control subjects. The level of serum PAB was significantly higher in the CVD group, 117.92 ± 35.51 and 110.65 ± 27.65 μg/dl in the angio– and angio+ groups, respectively compared to the control group (54.26 + 23.25). Additionally we observed that the SOD-3 level was higher in angio+ group versus control subjects. Conclusion: We have found that patients with CVD had a significantly higher prooxidant-antioxidant and SOD-3 levels. Further studies in larger multi-center setting are warranted to explore the value of emerging biomarker in CVD patients. 展开更多
关键词 CORONARY ARTERY Disease GLUTATHIONE peroxidases Superoxide Dismutases Real Time PCR ANGIOGRAPHY
暂未订购
Preliminary Study towards Enhanced Crude Oil Biodegradation Reveals Congeneric Total Peroxidases with Striking Distinctions
3
作者 Folasade M. Olajuyigbe Kevin I. Ehiosun Kikelomo F. Jaiyesimi 《Advances in Enzyme Research》 2015年第3期66-74,共9页
Peroxidases (POXs) are the key extracellular enzymes produced by crude oil degrading microbes. Knowledge of optimum conditions for POXs activity is crucial for providing effective environment for bioremediation. In th... Peroxidases (POXs) are the key extracellular enzymes produced by crude oil degrading microbes. Knowledge of optimum conditions for POXs activity is crucial for providing effective environment for bioremediation. In this study, physicochemical properties of POXs produced by Actinomyces israelii and Actinomyces viscosus during growth on crude oil were studied. The POXs exhibited similarities in activity and stability with striking differences in response to two divalent metal ions. The POXs from both species had optimum pH of 7.0 and were very stable over a narrow pH range (6.0 - 8.0). The POXs demonstrated similar thermostability exhibiting relative residual activity of 62% at 50°C after 30 min incubation and 45% residual activity at the same temperature after 60 min despite the fact that POXs from A. viscosus and A. israelii had optimum temperatures of 50°C and 40°C, respectively. The POXs from A. viscosus and A. israelii were greatly activated by Fe2+ at 5.0 and 10.0 mM. The enzymes were both strongly inhibited by Cu2+, Mg2+ and Hg2+. Surprisingly, these congeneric POXs demonstrated striking differences in their response to Ca2+ and Mn2+. POX from A. viscosus was activated by Ca2+ and Mn2+ exhibiting relative activity of 136% and 106% at 5 mM, respectively. In contrast, POX from A. israelii was strongly inhibited by Ca2+ and Mn2+ exhibiting 62.5% relative activity in the presence of 5 mM of each metal ion. Increasing the concentration of Ca2+ and Mn2+ led to further activation of POX from A. viscosus and inhibition of POX from A. israelii. Results provide deeper insights into functional properties of studied POXs from closely related microbes. The physicochemical properties are very similar;however, notable differences provide a strong basis for structural characterization of these congeneric enzymes. 展开更多
关键词 ACTINOMYCES israelii ACTINOMYCES viscosus BIOREMEDIATION Congeneric Enzymes CRUDE Oil peroxidases
暂未订购
Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL-04 被引量:4
4
作者 Muhammad Asgher Muhammad Ramzan Muhammad Bilal 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期561-570,共10页
Extracellular manganese peroxidases (MnPs) produced by native and mutant strains of Trametes versicolor IBL‐04 (EB‐60, EMS‐90) were purified by ammonium sulphate precipitation and dialysis, followed by ion‐exc... Extracellular manganese peroxidases (MnPs) produced by native and mutant strains of Trametes versicolor IBL‐04 (EB‐60, EMS‐90) were purified by ammonium sulphate precipitation and dialysis, followed by ion‐exchange and gel‐permeation chromatography. The purified enzymes elucidated a single band in the 43‐kDa region on sodium dodecyl sulphate‐polyacrylamide gel electrophoresis. The optimum pH and temperature of the purified enzymes were found to be 5.0 and 40 °C, respec‐tively. Mutant strain MnPs exhibited a broader active pH range and higher thermal stability than native MnP. Purified MnPs from selected mutants showed almost identical properties to native MnP in electrophoresis, steady‐state kinetics, and metal ion and endocrine‐disrupting compound (EDC) degradation efficiency. Although the fastest reaction rates occurred with Mn2+, MnPs displayed the highest affinity for ABTS, methoxyhydroquinone, 4‐aminophenol and reactive dyes. MnP activity was significantly enhanced by Mn2+and Cu2+, and inhibited in the presence of Zn2+, Fe2+, ethylene‐diaminetetraacetic acid and cysteine to various extents, with Hg2+ as the most potent inhibitory agent. MnPs from all sources efficiently catalyzed the degradation of the EDCs, nonylphenol and triclosan, removing over 80%after 3 h of treatment, which was further increased up to 90%in the presence of MnP‐mediator system. The properties of T. versicolor MnPs, such as high pH and ther‐mal stability, as well as unique Michaelis‐Menten kinetic parameters and high EDC elimination effi‐ciency, render them promising candidates for industrial exploitation. 展开更多
关键词 Manganese peroxidase Trametes versicolor IBL-04 PURIFICATION Characterization Thermo-stability BIODEGRADATION
在线阅读 下载PDF
Differential Expression of Two Cytosolic Ascorbate Peroxidases and Two Superoxide Dismutase Genes in Response to Abiotic Stress in Rice 被引量:3
5
作者 Shigeto MORITA Shinya NAKATANI +3 位作者 Tomokazu KOSHIBA Takehiro MASUMURA Yasunari OGIHARA Kunisuke TANAKA 《Rice science》 SCIE 2011年第3期157-166,共10页
Superoxide dismutase (SOD) and ascorbate peroxidase (APX) play central roles in the pathway for scavenging reactive oxygen species in plants, thereby contributing to the tolerance against abiotic stress. Here we repor... Superoxide dismutase (SOD) and ascorbate peroxidase (APX) play central roles in the pathway for scavenging reactive oxygen species in plants, thereby contributing to the tolerance against abiotic stress. Here we report the responses of cytosolic SOD (cSOD; sodCc1 and sodCc2) and cytosolic APX (cAPX; OsAPX1 and OsAPX2) genes to oxidative and abiotic stress in rice. RNA blot analyses revealed that methyl viologen treatment caused a more prominent induction of cAPXs compared with cSODs, and hydrogen peroxide treatment induced the expression of cAPXs whereas cSODs were not affected. These results suggest that cAPXs play more important roles in defense against oxidative stress compared with cSODs. It is noted that cSODs and cAPXs showed coordinate response to abscisic acid treatment which induced both sodCc1 and OsAPX2. However, cSODs and cAPXs responded differentially to drought, salt and chilling stress, which indicates that cSOD and cAPX genes are expressed differentially in response to oxidative and abiotic stress in rice. 展开更多
关键词 ascorbate peroxidase superoxide dismutase reactive oxygen species abiotic stress RICE
在线阅读 下载PDF
Kiwifruit(Actinidia chinensis 'Hongyang') cytosolic ascorbate peroxidases(AcAPX1 and AcAPX2) enhance salinity tolerance in Arabidopsis thaliana
6
作者 GUO Xiu-hong HE Yan +4 位作者 ZHANG Yu WANG Yi HUANG Sheng-xiong LIU Yong-sheng LI Wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第4期1058-1070,共13页
Ascorbate peroxidase(APX) plays a key role in scavenging reactive oxygen species(ROS) in higher plants. However, there is very little information available on the APXs in kiwifruit(Actinidia), which is an economically... Ascorbate peroxidase(APX) plays a key role in scavenging reactive oxygen species(ROS) in higher plants. However, there is very little information available on the APXs in kiwifruit(Actinidia), which is an economically and nutritionally important horticultural crop with exceptionally high ascorbic acid(AsA) accumulation. This study aims to identify and characterize two cytosolic APX genes(AcAPX1 and AcAPX2) derived from A. chinensis ‘Hongyang’. The constitutive expression pattern was determined for both AcAPX1 and AcAPX2, and showed relatively higher expression abundances of AcAPX1 in leaf and AcAPX2 in root. Transcript levels of AcAPX1 and AcAPX2 were increased in kiwifruit roots treated with Na Cl. Subcellular localization assays using GFP-fusion proteins in Arabidopsis protoplasts showed that both AcAPX1 and AcAPX2 are targeted to the cytosol. Recombinant AcAPX1 or AcAPX2 proteins were successfully expressed in the prokaryotic expression system and their individual ascorbate peroxidase activities were determined. Finally, constitutive over-expression of AcAPX1 or AcAPX2 could dramatically increase total As A, glutathione level and salinity tolerance under Na Cl stress in Arabidopsis thaliana. Our findings revealed that cytosolic AcAPX1/2 may play an important protective role in the responses to unfavorable environmental stimuli in kiwifruit. 展开更多
关键词 ACTINIDIA ascorbic acid ascorbate peroxidase SALINITY
在线阅读 下载PDF
Peroxidases of Seeds of the Soy Genetic Collection
7
作者 Shavkat Yunusxanov Mirzohid Sh. Jaynaqov 《American Journal of Plant Sciences》 2020年第4期549-553,共5页
The article studies the activity of the peroxidase enzyme in cereals and barks of some varieties of soy plants. The soy (plant) samples we studied were obtained in the conditions of the Tashkent region at the experime... The article studies the activity of the peroxidase enzyme in cereals and barks of some varieties of soy plants. The soy (plant) samples we studied were obtained in the conditions of the Tashkent region at the experimental field of the Institute of genetics and plant experimental biology in the village of Durmen. 11 samples out of 40 examined on electrophoregrams did not show the presence of the studied enzymes. Further research is needed to clarify the results. 展开更多
关键词 PEROXIDASE SOY GENETIC COLLECTION SEEDS
在线阅读 下载PDF
Cell Wall Lignin is Polymerised by Class Ⅲ Secretable Plant Peroxidases in Norway Spruce 被引量:14
8
作者 Kurt V.Fagerstedt Eija M.Kukkola +2 位作者 Ville V.T.Koistinen Junko Takahashi Kaisa Marjamaa 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2010年第2期186-194,共9页
Class Ⅲ secretable plant peroxidases occur as a large family of genes in plants with many functions and probable redundancy. In this review we are concentrating on the evidence we have on the catalysis of lignin poly... Class Ⅲ secretable plant peroxidases occur as a large family of genes in plants with many functions and probable redundancy. In this review we are concentrating on the evidence we have on the catalysis of lignin polymerization by class Ⅲ plant peroxidases present in the apoplastic space in the xylem of trees. Some evidence exists on the specificity of peroxidase isozymes in lignin polymerization through substrate specificity studies, from antisense mutants in tobacco and poplar and from tissue and cell culture lines of Norway spruce (Picea abies) and Zinnia elegans. In addition, real time (RT-)PCR results have pointed out that many peroxidases have tissue specific expression patterns in Norway spruce. Through combining information on catalytic properties of the enzymes, on the expression patterns of the corresponding genes, and on the presence of monolignols and hydrogen peroxide in the apoplastic space, we can show that specific peroxidases catalyze lignin polymerization in the apoplastic space of Norway spruce xylem. 展开更多
关键词 Secretable Plant peroxidases in Norway Spruce
原文传递
Noncovalent immobilization of manganese peroxidases from P.chrysosporium on carbon nanotubes 被引量:1
9
作者 Jiaxi LI Xianghua WEN 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2009年第3期294-299,共6页
Manganese peroxidases(MnP)from Phanerochaete chrysosporium were adsorbed onto multi-walled carbon nanotubes(MWNT).Four different loadings of MnP on MWNTs were investigated,and the maximum enzyme loading of 47.5µg... Manganese peroxidases(MnP)from Phanerochaete chrysosporium were adsorbed onto multi-walled carbon nanotubes(MWNT).Four different loadings of MnP on MWNTs were investigated,and the maximum enzyme loading of 47.5µg/mg of MWNTs was obtained in 12 h.The adsorbed MnP showed a catalytic activity of up to 0.1 U/mg of the weight of the system of MnP/MWNTs,with 23%of its original activity retained.The AFM image of the adsorbed enzymes indicated that a layer of MnP covered the surface of the MWNTs and retained its original three-dimensional shape.Amino-based nonspecific interactions may play the dominant role in the adsorption of MnP on MWNTs. 展开更多
关键词 manganese peroxidases(MnP) Phanerochaete chrysosporium carbon nanotubes IMMOBILIZATION catalytic activity
原文传递
Carbon Dots as Artificial Peroxidases for Analytical Applications 被引量:1
10
作者 Shih-Chun Wei Yang-Wei Lin Huan-Tsung Chang 《Journal of Analysis and Testing》 EI 2019年第3期191-205,共15页
Nanozymes have become attractive in analytical and biomedical fields,mainly because of their low cost,long shelf life,and less environmental sensitivity.Particularly,nanozymes formed from nanomaterials having high sur... Nanozymes have become attractive in analytical and biomedical fields,mainly because of their low cost,long shelf life,and less environmental sensitivity.Particularly,nanozymes formed from nanomaterials having high surface area and rich active sites are interesting since their activities can be tuned through carefully controlling their size,morphology,and surface properties.This review article focuses on preparation of carbon dots(C dots)possessing peroxidase-like activity and their analytical applications.We highlight the important roles of the oxidation states and surface residues of C dots and their nanocomposites with metal,metal oxides,or metal sulfides playing on determining their specificity and sensitivity toward H2O2.Examples of C dot nanozymes(CDzymes)for developing sensitive and selective absorption,fluorescence,and elec-trochemical sensing systems in the presence of substrates are presented to show their potential in analytical applications.For example,CDzymes couple with glucose oxidase and cholesterol oxidase are specific and sensitive for quantitation of glucose and cholesterol,separately,when using 3,3′,5,5′-tetramethylbenzidine(TMB)as the signal probe.This review article concludes with possible strategies for enhancing and tuning the catalytic activity of CDzymes. 展开更多
关键词 Nanozymes PEROXIDASE Carbon dots CDzymes SENSING
原文传递
Characteristics and expression of heat shock gene Lghsp17.4 in Lenzites gibbosa,a white rot fungus of wood
11
作者 Lianrong Feng Yujie Chi +2 位作者 Jian Zhang Xuxin Yang Shuying Han 《Journal of Forestry Research》 2025年第1期445-460,共16页
Small heat shock proteins(sHSPs)act as molecular chaperones that can prevent the accumulation of damaged proteins during abiotic stress,especially heat shock,but the mechanism is not clear.To study the function of sHS... Small heat shock proteins(sHSPs)act as molecular chaperones that can prevent the accumulation of damaged proteins during abiotic stress,especially heat shock,but the mechanism is not clear.To study the function of sHSPs in Lenzites gibbosa,a common polypore in northern temperate forests that causes spongy white rot of broadleaf trees,under temperature stress,L.gibbosa mycelia were grown at 25℃ for 9 d,treated at 33℃ for 15,30,60,and 120 min before sequencing the transcriptomes.From among 32 heat shock protein(HSP)genes found in the screen of the transcriptome data,a highly expressed gene was cloned and named Lghsp17.4.RT-qPCR was used to analyze the expression of the gene Lghsp17.4 under heat shock and dye stress.Both treatments induced higher expression of Lghsp17.4 at the transcriptional level,indicating that Lghsp17.4 might function in the response to heat stress and dye degradation.We previously found that L.gibbosa generally had a heat shock reaction(HSR)during degradation of aromatic compounds,and HSPs were always produced with manganese peroxidases(MnPs)and other lignin-degrading enzymes.Therefore,we measured the activity of MnPs in L.gibbosa after 33℃ heat shock to analyze the relationship between MnPs expression and Lghsp17.4 expression.Heat shocks of 0–30 min increased MnPs activity,and the change in MnPs activity were closely positively correlated with the expression levels of Lghsp17.4 over time,indicating a potential connection and interaction between LgHSP17.4 and MnPs during the HSR in L.gibbosa.Thus,LgHSP17.4 might have a positive regulatory effect on the HSR in L.gibbosa and be a critical component of a stress resistance mechanism. 展开更多
关键词 Lenzites gibbosa Small heat shock protein Heat shock reaction Heterologous expression Manganese peroxidases(MnPs)
在线阅读 下载PDF
Polyethylene glycol fusion repair of severed rat sciatic nerves reestablishes axonal continuity and reorganizes sensory terminal fields in the spinal cord 被引量:1
12
作者 Emily A.Hibbard Liwen Zhou +5 位作者 Cathy Z.Yang Karthik Venkudusamy Yessenia Montoya Alexa Olivarez George D.Bittner Dale R.Sengelaub 《Neural Regeneration Research》 SCIE CAS 2025年第7期2095-2107,共13页
Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene g... Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene glycol(PEG),to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves.We have previously reported that sciatic nerve axons repaired by PEG-fusion do not undergo Wallerian degeneration,and PEG-fused animals exhibit rapid(within 2–6 weeks)and extensive locomotor recovery.Furthermore,our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific,i.e.,spinal motoneurons in PEG-fused animals were found to project to appropriate as well as inappropriate target muscles.In this study,we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve.Young adult male and female rats(Sprague–Dawley)received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without(Negative Control)the application of PEG.Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site.The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively.At 2–42 days postoperatively,we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase.PEG-fusion repair reestablished axonal continuity.Compared to unoperated animals,labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn,as well as inappropriate mediolateral and rostrocaudal areas.Unexpectedly,despite having intact peripheral nerves,similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair.This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair,supporting the use of this novel repair methodology over currently available treatments. 展开更多
关键词 AXOTOMY dorsal horn peripheral nerve injury PLASTICITY polyethylene glycol(PEG) sciatic nerve sensory terminals wheat germ agglutinin horseradish peroxidase
暂未订购
The role of glutathione peroxidase 4 in the progression,drug resistance,and targeted therapy of non-small cell lung cancer 被引量:1
13
作者 JIAHENG WEI LIANGMING ZHU 《Oncology Research》 2025年第4期863-872,共10页
Lung cancer is one of the main causes of cancer-related deaths globally,with non-small cell lung cancer(NSCLC)being the most prevalent histological subtype of lung cancer.Glutathione peroxidase 4(GPX4)is a crucial ant... Lung cancer is one of the main causes of cancer-related deaths globally,with non-small cell lung cancer(NSCLC)being the most prevalent histological subtype of lung cancer.Glutathione peroxidase 4(GPX4)is a crucial antioxidant enzyme that plays a role in regulating ferroptosis.It is also involved in a wide variety of biological processes,such as tumor cell growth invasion,migration,and resistance to drugs.This study comprehensively examined the role of GPX4 in NSCLC and investigated the clinical feasibility of targeting GPX4 for NSCLC treatment.We discovered that GPX4 influences the progression of NSCLC by modulating multiple signaling pathways,and that blocking GPX4 can trigger ferroptosis and increase the sensitivity to chemotherapy.As a result,GPX4 represents a prospective therapeutic target for NSCLC.Targeting GPX4 inhibits the development of NSCLC cells and decreases their resistance to treatment. 展开更多
关键词 Non-small cell lung cancer(NSCLC) Glutathione peroxidase 4(GPX4) Drug resistance INHIBITOR Biological function
暂未订购
GSTM1 suppresses cardiac fibrosis post-myocardial infarction through inhibiting lipid peroxidation and ferroptosis 被引量:1
14
作者 Kai-Jie Chen Yue Zhang +12 位作者 Xin-Yi Zhu Shuo Yu Yao Xie Cheng-Jiang Jin Yi-Min Shen Si-Yu Zhou Xiao-Ce Dai Sheng-An Su Lan Xie Zheng-Xing Huang Hui Gong Mei-Xiang Xiang Hong Ma 《Military Medical Research》 2025年第10期1520-1541,共22页
Background:Cardiac fibrosis following myocardial infarction(MI)drives adverse ventricular remodeling and heart failure,with cardiac fibroblasts(CFs)playing a central role.Glutathione S-transferase mu 1(GSTM1)is an imp... Background:Cardiac fibrosis following myocardial infarction(MI)drives adverse ventricular remodeling and heart failure,with cardiac fibroblasts(CFs)playing a central role.Glutathione S-transferase mu 1(GSTM1)is an important member of the glutathione S-transferase(GSTs)family,which plays an important role in maintaining cell homeostasis and detoxification.This study investigated the role and mechanism of GSTM1 in post-MI fibrosis.Methods:Multi-omics approaches(proteomics/scRNA-seq)identified GSTM1 as a dysregulated target in post-MI fibroblasts.Using a murine coronary ligation model,we assessed GSTM1 dynamics via molecular profiling,such as Western blotting,immunofluorescence,and real-time quantitative polymerase chain reaction.Adeno-associated virus serotype 9(AAV9)-mediated cardiac-specific GSTM1 overexpression was achieved through systemic delivery.In vitro studies employed transforming growth factor-β(TGF-β)-stimulated primary fibroblasts with siRNA/plasmid interventions.Mechanistic insights were derived from transcriptomics and lipid peroxidation assays.Results:The expression of GSTM1 in mouse CFs after MI was significantly down-regulated at both transcriptional and protein levels.In human dilated cardiomyopathy(DCM)patients with severe heart failure,GSTM1 expression was decreased alongside aggravated fibrosis.Overexpression of GSTM1 in post-MI mice improved cardiac function,while significantly reducing infarct size and fibrosis compared with the control group.In vitro models demonstrated that GSTM1 markedly attenuated collagen secretion and activation of fibroblasts,as well as suppressed their proliferation and migration.Further studies revealed that GSTM1 overexpression significantly inhibited the generation of intracellular and mitochondrial reactive oxygen species(ROS)under pathological conditions,suggesting that GSTM1 exerts an antioxidative stress effect in post-infarction fibroblasts.Further investigation of molecular mechanisms indicated that GSTM1 may suppress the initiation and progression of fibrosis by modulating lipid metabolism and ferroptosis-related pathways.Overexpression of GSTM1 significantly reduced lipid peroxidation and free ferrous iron levels in fibroblasts and mitochondria,markedly decreased ferroptosis-related indicators,and alleviated oxidative lipid levels[such as 12-hydroxyeicosapentaenoic acid(HEPE)and 9-,10-dihydroxy octadecenoic acid(DHOME)]under fibrotic conditions.GSTM1 enhanced the phosphorylation of signal transducer and activator of transcription 3(STAT3),thereby upregulating the downstream expression of glutathione peroxidase 4(GPX4),reducing ROS production,and mitigating fibroblast activation and phenotypic transformation by inhibiting lipid peroxidation.Conclusions:This study identifies GSTM1 as a key inhibitor of fibroblast activation and cardiac fibrosis,highlighting its ability to target ferroptosis through redox regulation.AAV-mediated GSTM1 therapy demonstrates significant therapeutic potential for improving outcomes post-MI. 展开更多
关键词 Glutathione S-transferase mu 1(GSTM1) Ferroptosis Cardiac fibrosis(CFs) Myocardial infarction(MI) Lipid peroxidation Glutathione peroxidase 4(GPX4) Reactive oxygen species(ROS)
原文传递
CXCL16 promotes proliferation of head and neck squamous cell carcinoma by regulating GPX1-mediated antioxidant levels 被引量:1
15
作者 Ru HE Hongyi JIANG +10 位作者 Chengchi ZHANG Yuan CHEN Wenshun LIU Xinyue DENG Xiaozheng ZHU Yunye LIU Chuanming ZHENG Yining ZHANG Chengying SHAO Yanting DUAN Jiajie XU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 2025年第1期92-106,共15页
Numerous studies have demonstrated that the high expression of CXC motif chemokine ligand 16(CXCL16)in cancer correlates with poor prognosis,as well as tumor cell proliferation,migration,and invasion.While CXCL16 can ... Numerous studies have demonstrated that the high expression of CXC motif chemokine ligand 16(CXCL16)in cancer correlates with poor prognosis,as well as tumor cell proliferation,migration,and invasion.While CXCL16 can serve as a tumor biomarker,the underlying mechanism in modulating head and neck squamous cell carcinoma(HNSCC)remains unclear.In this study,the aimed was to investigate the CXCL16 expression in HNSCC and to uncover the potential underlying mechanism.Hereby,we determined the high expression of CXCL16 in The Cancer Genome Atlas(TCGA)database,as well as in tissue samples from patients with HNSCC at our central hospital and from HNSCC cell lines.The results showed that CXCL16 knockdown inhibited the proliferation,migration,and invasion of HNSCC cells.Mechanistically,transcriptome sequencing revealed that CXCL16 may affect HNSCC cell growth by regulating the antioxidant pathway of glutathione peroxidase 1(GPX1).The reactive oxygen species(ROS)levels were elevated in small interfering CXCL16(si-CXCL16)cells,which may contribute to the inhibition of cell proliferation,migration,and invasion.Moreover,treatment of cells with the GPX1 inhibitor eldecalcitol(ED-71)revealed that HNSCC cell growth was significantly inhibited in the synergistic group of si-CXCL16 and GPX1 inhibitor compared to the si-CXCL16 group.In conclusion,CXCL16 contributed to the development of HNSCC cells by modulating the GPX1-mediated antioxidant pathway.Thus,targeting cellular CXCL16 expression seems to be a promising strategy for treating HNSCC. 展开更多
关键词 Antioxidant pathway CXC motif chemokine ligand 16(CXCL16) Glutathione peroxidase 1(GPX1) Head and neck squamous cell carcinoma(HNSCC)
原文传递
Electrochemical synthesis strategy for the development of antitumor selenoheterocyclic compounds
16
作者 Zhi-Lin Wu Rong-Nan Yi Chunlin Zhuang 《Chinese Chemical Letters》 2025年第10期4-5,共2页
Selenium(Se),an essential micronutrient among the 15 vital elements required for human physiology,exerts its biological functions primarily through its incorporation into selenoproteins.To date,approximately 25 seleno... Selenium(Se),an essential micronutrient among the 15 vital elements required for human physiology,exerts its biological functions primarily through its incorporation into selenoproteins.To date,approximately 25 selenoproteins have been characterized in mammalian systems,including glutathione peroxidase(GPX),thioredoxin reductase(TrxR),and iodothyronine deiodinases(DIOs),all of which exhibit indispensable physiological functions. 展开更多
关键词 selenoheterocyclic compounds SELENOPROTEINS vital elements antitumor compounds electrochemical synthesis SELENIUM glutathione peroxidase glutathione peroxidase gpx thioredoxin reductase trxr
原文传递
Occurrences of Yttrium in Soil and Its Potential Impacts on Paddy Rice Triticum aestivum 被引量:1
17
作者 冯秀娟 张素贞 +3 位作者 朱易春 马彩云 潘阳 高咪 《Agricultural Science & Technology》 CAS 2013年第12期1783-1787,共5页
[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Trit... [Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Triticum aestivum)) together with the occurrences of Y in soils were investigated to assess its ecotoxicological effects on plant. [Method]Y solutions with various concentrations were sprinkled on soil sam- ples, which were well mixed and then put into culture dishes to culture paddy rice seeds for further evaluation. [Result] The results indicated that 25-100 mg/kg Y treatments significantly increased the biomass (total weight, root weight, shoot weight and leaf weight), chlorophyll (CHL) content and protein content of paddy rice, whereas 200-800 mg/kg Y treatments had a converse effect. Similarly, biomarker for the antioxidant systems including superoxide dismutases (SOD), peroxidases (POD) and catalases (CAT) all exhibited similar trends in both shoots and roots of paddy rice. At the same time, the malonaldehyde (MDA) content increased at from 25 to 100 mg/kg and decreased with concentrations of Y from 100 to 800 mg/kg in both shoots and roots of paddy rice. This indicated that Y could stimulate the growth of plant at low concentration, but inhibit the growth at relatively high concen- tration. [Conclusion] The levels of Y were 641+49, 328_+16 and 473_+40 mg/kg in soils collected from mining area, farmland and navel orange orchard respectively. The levels of Y in the investigated area were higher than the benefit level (100 mg/kg), which could cause low biomass as well as low activity of SOD, POD and CAT in paddy rice. Therefore, a more careful use of Y is necessary in crop management. 展开更多
关键词 Yttrium (Y) Oxidative stress Dismutases (SOD) peroxidases (POD) Catalases (CAT) Paddy rice (Yttrium (Y) Oxidative stress Dismutases (SOD) Per- oxidases (POD) Catalases (CAT) Paddy rice (Triticum aestivum))
在线阅读 下载PDF
Valence-band hybridization endows the reaction specificity of AgPd nanozyme for exclusive peroxidase mimicking and improved sensing performance
18
作者 Peng Jin Sili Lin +3 位作者 Dongmei Wang Jinsong Fan Qingyun Liu Kun Li 《Chinese Chemical Letters》 2025年第11期264-269,共6页
Nanozymes,characterized by their stability,cost-effectiveness,and tunable catalytic activity,are promising alternatives to natural enzymes.However,specifically mimicking a single natural enzyme's activity presents... Nanozymes,characterized by their stability,cost-effectiveness,and tunable catalytic activity,are promising alternatives to natural enzymes.However,specifically mimicking a single natural enzyme's activity presents a challenge.By exploiting the catalytic selectivity derived from the valence-band hybridization of noble metal nanoalloys,we introduce an alloying strategy to modulate the reaction specificity of metallic nanozymes.Ag Pd nanoalloy exhibits enhanced peroxidase-like activity and eliminated oxidase-like activity by adjusting the Ag content.The introduction of Ag changes the hybrid d band energy of the alloyed metal and inhibits the O_(2)adsorption and decomposition on Pd,while improving the peroxidase mimicry by allowing for the H_(2)O_(2)activation.By exemplifying the construction of a highly sensitive and selective colorimetric glucose detection platform with its practicality validated in serum samples,this strategy pioneers a multi-noble metal nanozyme with tailored peroxidase activity based on the chemical structure engineering and would advance the development of single-catalytic function nanozymes for building exclusively specific biosensors through reducing substrate competition. 展开更多
关键词 Reaction specificity PEROXIDASE Silver PALLADIUM NANOALLOY Glucose detection
原文传递
Discovery and validation of indole nitroolefins as novel covalent GPX4 inhibitors for inducing ferroptosis in urological cancers
19
作者 Na Zeng Guichen Ye +7 位作者 Mengchu Zheng Guangyuan Liu Sihan Zhang Siyang Ma Zhiyu Xia Yirong Zhou Shaogang Wang Qidong Xia 《Chinese Journal of Cancer Research》 2025年第3期404-416,共13页
Objective:Ferroptosis represents a form of cell death characterized by the accumulation of iron dependent lipid peroxidation.This process culminates in membrane damage and cell lysis.One pivotal surveillance mechanism... Objective:Ferroptosis represents a form of cell death characterized by the accumulation of iron dependent lipid peroxidation.This process culminates in membrane damage and cell lysis.One pivotal surveillance mechanism is induced by glutathione peroxidase 4(GPX4).Furthermore,inhibition of GPX4 has been reported to hold a promise effect in cancer therapeutics.Methods:Computer-aided docking and small molecule probe were used for designed compounds.Flow cytometry was used to evaluate the ferroptosis.Animal experiments were taken to evaluate the in vivo effect of two compounds.Results:Based on our prior research,a series of twenty compounds with covalent binding potential was designed and synthesized.Under systematic evaluation,our team identified two small molecules 14 and 16,which significantly stabilized GPX4 thermal denaturation.Further investigations revealed that treatment with compounds14 and 16 led to an increase in lipid peroxidation,oxidative stress,and other markers(C11,Fe^(2+) and ROS)levels also increased.In both in vivo and in vitro experiment,compounds 14 and 16 are found suppression effect on urological cancer cells.Conclusions:Compounds 14 and 16 deserve further works as lead compounds of novel docking models for finally discovering effective anti-tumor drug.Future research is needed to dissect their mechanism and exploits this scaffold for GPX4 inhibitor development. 展开更多
关键词 Ferroptosis glutathione peroxidase 4 INHIBITOR NITROOLEFINS urological cancers
暂未订购
Fine-mapping and candidate gene analysis of tuber eye depth in potato
20
作者 Guiyan Fan Shaoguang Duan +8 位作者 Yuting Yang Yanfeng Duan Yinqiao Jian Jun Hu Zhiyuan Liu Yang-dong Guo Liping Jin Jianfei Xu Guangcun Li 《Horticultural Plant Journal》 2025年第3期1248-1259,共12页
Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breedin... Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breeding.In this study,based on the primary mapping of the tuber eyedepth locus using a small primary-segregating population,a large secondary-segregating population with 2100 individuals was used to map the eye-depth locus further.A major quantitative trait locus for eye-depth on chromosome 10 was identified(designated qEyd10.1)using BSAseq and traditional QTL mapping methods.The qEyd10.1 could explain 55.0%of the eye depth phenotypic variation and was further narrowed to a 309.10 kb interval using recombinant analysis.To predict candidate genes,tissue sectioning and RNA-seq of the specific tuber tissues were performed.Genes encoding members of the peroxidase superfamily with likely roles in indole acetic acid regulation were considered the most promising candidates.These results will facilitate marker-assisted selection for the shallow-eye trait in potato breeding and provide a solid basis for eye-depth gene cloning and the analysis of tuber eye-depth regulatory mechanisms. 展开更多
关键词 BSA-seq Eye depth PEROXIDASE Potato tuber Quantitative trait loci
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部