To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear...The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.展开更多
Al/NH_(4)CoF_(3)-Φ(Φ=0.5,1.0,1.5,2.0,and 3.0)binary composites and Al-NH_(4)CoF_(3)@P(VDF-HFP)ternary composites are fabricated via ultrasonication-assisted blending and electrostatic spraying.The effect of equivale...Al/NH_(4)CoF_(3)-Φ(Φ=0.5,1.0,1.5,2.0,and 3.0)binary composites and Al-NH_(4)CoF_(3)@P(VDF-HFP)ternary composites are fabricated via ultrasonication-assisted blending and electrostatic spraying.The effect of equivalence ratio(Φ)on the reaction properties is systematically investigated in the binary Al/NH_(4)CoF_(3)system.For ternary systems,electrostatic spraying allows both components to be efficiently encapsulated by P(VDF-HFP)and to achieve structural stabilization and enhanced reactivity through synergistic interfacial interactions.Morphological analysis using SEM/TEM revealed that P(VDF-HFP)formed a protective layer on Al and NH_(4)CoF_(3)particles,improving dispersion,hydrophobicity(water contact angle increased by 80.5%compared to physically mixed composites),and corrosion resistance.Thermal decomposition of NH_(4)CoF_(3)occurred at 265℃,releasing NH_(3)and HF,which triggered exothermic reactions with Al.The ternary composites exhibited a narrowed main reaction temperature range and concentrated heat release,attributed to improved interfacial contact and polymer decomposition.Combustion tests demonstrated that Al-NH_(4)CoF_(3)@P(VDF-HFP)achieved self-sustaining combustion.In addition,a simple validation was done by replacing the Al component in the aluminium-containing propellant,demonstrating its potential application in the propellant field.This work establishes a novel strategy for designing stable,high-energy composites with potential applications in advanced propulsion systems.展开更多
The core components of an aircraft and the source of its lift are its wings,but lift generation is disrupted by the high temperature and pressure generated on the wing surface when an aircraft gun is fired.Here,to inv...The core components of an aircraft and the source of its lift are its wings,but lift generation is disrupted by the high temperature and pressure generated on the wing surface when an aircraft gun is fired.Here,to investigate how this process influences the aerodynamic parameters of aircraft wings,the k-ωshearstress-transport turbulence model and the nested dynamic grid technique are used to analyze numerically the transient process of the muzzle jet of a 30-mm small-caliber aircraft gun in highaltitude(10 km)flight with an incoming Mach number of Ma=0.8.For comparison,two other models are established,one with no projectile and the other with no wing.The results indicate that when the aircraft gun is fired,the muzzle jet acts on the wing,creating a pressure field thereon.The uneven distribution of high pressure greatly reduces the lift of the aircraft,causing oscillations in its drag and disrupting its dynamic balance,thereby affecting its flight speed and attitude.Meanwhile,the muzzle jet is obstructed by the wing,and its flow field is distorted and deformed,developing upward toward the wing.Because of the influence of the incoming flow,the shockwave front of the projectile changes from a smooth spherical shape to an irregular one,and the motion parameters of the projectile are also greatly affected by oscillations.The present results provide an important theoretical basis for how the guns of fighter aircraft influence the aerodynamic performance of the wings.展开更多
The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative conti...The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites.展开更多
In composite solid propellants with high aluminum(Al)content and low burning rate,incomplete combustion of the Al powder may occur.In this study,varying lithium(Li)content in Al-Li alloy powder was utilized instead of...In composite solid propellants with high aluminum(Al)content and low burning rate,incomplete combustion of the Al powder may occur.In this study,varying lithium(Li)content in Al-Li alloy powder was utilized instead of pure aluminum particles to mitigate agglomeration and enhance the combustion efficiency of solid propellants(Combustion efficiency herein refers to the completeness of metallic fuel oxidation,quantified as the ratio of actual-to-theoretical energy released during combustion)with high Al content and low burning rates.The impact of Al-Li alloy with different Li contents on combustion and agglomeration of solid propellant was investigated using explosion heat,combustion heat,differential thermal analysis(DTA),thermos-gravimetric analysis(TG),dynamic high-pressure combustion test,ignition experiment of small solid rocket motor(SRM)tests,condensation combustion product collection,and X-ray diffraction techniques(XRD).Compared with pure Al,Al-Li alloys exhibit higher combustion heat,which contributes to improved combustion efficiency in Al-Li alloy-containing propellants.DTA and TG analyses demonstrated higher reactivity and lower ignition temperatures for Al-Li alloys.High-pressure combustion experiments at 5 MPa showed that Al-Li alloy fuel significantly decreases combustion agglomeration.The results from theφ75 mm andφ165 mm SRM and XRD tests further support this finding.This study provides novel insights into the combustion and agglomeration behaviors of high-Al,low-burning-rate composite solid propellants and supports the potential application of Al-Li alloys in advanced propellant formulations.展开更多
Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forc...Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management.展开更多
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0...This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.展开更多
Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capabi...Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.展开更多
A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-spa...A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-span two-story concrete-filled steel tube(CFT)column frame specimen equipped with lateral-side butterfly-shaped linked BRSPSWs(LBL-BRSPSWs)is evaluated under low-cycle reversed loading.A finite element(FE)model is developed and validated based on the test results.This FE model accurately simulates the failure modes and load-dis-placement curves.Parametric analyses are conducted on the butterfly-shaped links.The results show that the interactions between the CFT column frame and LBL-BRSPSWs are sig-nificantly influenced by the width ratio of the butterfly-shaped links,while the taper ratio and aspect ratio have relatively minor influences.Compared with traditional steel shear walls with four-sided connections,LBL-BRSPSWs reduce the additional axial forces and bending moments in the frame columns by 28%to 73%and 17%to 87%,respectively,with only a 9%to 30%decrease in the lateral resistance.The experimental and parametric analysis results indicate that setting butterfly-shaped links on the lateral sides of BRSPSWs can significantly enhance their cooperative performance with the boundary frame.The butterfly-shaped link width ratio has a linear relationship with the lateral-resistance performance of the specimens and the additional internal forces in the frame columns.To ensure that LBL-BRSPSW fails prior to the column frames,the link width ratio should be optimized.展开更多
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be...In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.展开更多
The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were...The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM.展开更多
To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying ...To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.展开更多
The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-heali...The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-healing function have problems such as irregular particle shape and uneven distribution of components,which affect the efficient play of self-healing function.In this paper,HMX-based energetic microspheres with self-healing function were successfully prepared by microchannel technology,which showed excellent self-healing effect in both Polymer-bonded explosives(PBXs)and Composite solid propellants(CSPs).The experimental results show that the HMX-based energetic microspheres with different binder contents prepared by microchannel technology show regular shape,HMX crystal particles are uniformly wrapped by self-healing binder(GAPU).When the content of GAPU in HMX-based energetic microspheres is 10%,PBXs show excellent self-healing effect and mechanical safety is improved by 400%(raw HMX vs S4,5 J vs 25 J).As a high-energy component,the burning rate of CSPs is increased by 359.4%,the time(burning temperature>1700℃)is prolonged by 333.3%,and the maximum impulse force is increased by 107.3%(CSP-H vs CSP-S4,0.84 mm/s vs 3.87 mm/s,0.06 s vs 0.26 s,0.82 m N vs 1.70 m N).It also has excellent storage performance.The preparation of HMX-based energetic microspheres with self-healing function by microchannel technology provides a new strategy to improve the storage performance of ECMs and the combustion performance of CSPs.展开更多
This article investigated the factors and mechanisms that affected the workability and mechanical properties of cement paste incorporating nano-TiO_(2).The findings indicated that,for nano-TiO_(2)aqueous solution conc...This article investigated the factors and mechanisms that affected the workability and mechanical properties of cement paste incorporating nano-TiO_(2).The findings indicated that,for nano-TiO_(2)aqueous solution concentrations of 3%,6%,9%,and 12%,the optimal dispersion effect was achieved with an ultrasonic dispersion time of 20 minutes.Specifically,at a 6%nano-TiO_(2)content,both the workability and mechanical performance of the cement paste were enhanced.Furthermore,while nano-TiO_(2)did not alter the types of hydration products present in the cement paste,it did increase the amount of C-S-H gels.This enhancement was attributed to a higher number of nucleation sites for hydration products,which promoted hydration and reduced the porosity of the cement paste.展开更多
Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digit...Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digital engineering.Due to their highly integrated nature,aeroengines present challenges in performance evaluation because their test-run data are high-dimensional,large-scale,and exhibit strong nonlinear correlations among test indicators.To solve this problem,this study proposes a unified framework of the comprehensive performance evaluation of aeroengines to assess performance objectively and globally.Specifically,the network model and the dynamics model of aeroengine performance are constructed driven by test-run data,which can explain the patterns of system state changes and the internal relationship,and depict the system accurately.Based on that,three perturbations in the model are used to simulate three fault modes of aeroengines.Moreover,the comprehensive performance evaluation indexes of aeroengines are proposed to evaluate the performance dynamically from two dimensions,the coupling performance and the activity performance.Thirteen test-run qualified and four test-run failed aeroengines are used to validate and establish the qualified ranges.The results demonstrate that the comprehensive evaluation indexes can distinguish test-run qualified and test-run failed aeroengines.By changing the dynamic parameters,the comprehensive performance under any thrust and inlet guide vanes(IGV)angle can be estimated,broadening the test-run scenarios beyond a few typical states.This novel approach offers significant advancements for the comprehensive performance evaluation and management of aeroengines,paving the way for future PHM and aeroengine digital engineering developments.展开更多
Obtaining inertial fusion energy requires higher gain in laser indirect drive inertial confinement fusion(ICF),but traditional cylindrical hohlraums face two persistent challenges:low energy coupling efficiency from t...Obtaining inertial fusion energy requires higher gain in laser indirect drive inertial confinement fusion(ICF),but traditional cylindrical hohlraums face two persistent challenges:low energy coupling efficiency from the hohlraum to the capsule and severe inner beam interception by outer gold bubbles,both needing optimization for improved ICF performance.In this paper,a new domed-rugby hohlraum design is proposed.The novel and optimized hohlraum configuration increases the energy coupling efficiency by reducing the wall surface and energy loss with a rugby-shaped geometry,thereby enhancing the radiation source temperature.Simultaneously,through a special toroidal dome structure,the interaction between the outer bubble plasma and inner laser beams is mitigated,allowing the inner laser beams to reach the waist of the hohlraum.As a result,more spherical implosions are obtained and the quality of the radiation source is improved.It has been simulated that on the 100 kJ class laser facility,there is a 20%higher neutron yield.The integrated implosion performance is expected to be significantly advanced in such a novel configuration,providing a new concept for hohlraum configuration designs with a high-temperature and high-quality radiation source.展开更多
Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist mo...Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5].展开更多
A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests...A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests were conducted on key sections of steel-concrete composite cable-stayed bridges to analyze the stress-strain evolution of wet joints under environmental factors,constraints,and complex construction processes.The coordinated working performance of the bridge decks was also analyzed.The results indicate that temperature is the key factor affecting the stresses and strains in wet joint concrete.Approximately 7 days after casting the wet joint concrete,the strains at each measurement point of the wet joint are approximately negatively correlated with the temperature change at the measurement point.Different locations within the wet joints have respective impacts,presenting potential weak points.Construction conditions have a certain impact on the stress and strain of the wet joint.The top deck of the steel box girder is not fully bonded to the bottom surface of the wet joints,resulting in a certain strain difference after loading.To further analyze the cooperative working performance of steel box girders and concrete wet joint bridge deck systems,finite element analysis was conducted on composite girder structures.A stiffness calculation method for shear connectors based on numerical simulation was proposed.The results indicate that strain differences can cause interface slip in composite girders.This slip leads to increased deflection of the composite girders and increased tensile stress in the bottom plate of the steel box girders.This study clarifies the stress conditions and factors affecting wet joints during construction,preventing early cracking,and offers precise data for a full bridge finite element model.展开更多
Amid the accelerating process of digital transformation,electronic performance monitoring has become an essential tool in organizational management.As a process that utilizes information technology to observe,record,a...Amid the accelerating process of digital transformation,electronic performance monitoring has become an essential tool in organizational management.As a process that utilizes information technology to observe,record,and analyze employees’work behaviors and performance,electronic performance monitoring not only enhances organizational efficiency and optimizes decision-making support but also exerts a profound influence on employees’psychological states and behavioral responses.This paper systematically reviews the conceptual evolution,measurement methods,and related research progress of electronic performance monitoring.The findings reveal that the definition of electronic performance monitoring has evolved dynamically from a“technological tool”to an“organizational practice,”and its measurement approaches have developed from a single-dimensional to a multi-dimensional perspective,encompassing aspects such as monitoring purpose,monitoring intensity,and monitoring feedback.Existing empirical studies indicate that different types of electronic performance monitoring,such as developmental and preventive monitoring,have distinct impacts on employees’job performance,innovative behavior,and psychological responses.Overall,developmental monitoring tends to foster positive behaviors and creativity,whereas preventive monitoring may trigger psychological resistance and counterproductive work behaviors.This review provides a theoretical foundation for understanding the dual-edged effects of electronic performance monitoring and lays the groundwork for developing localized measurement instruments and exploring its underlying mechanisms in future research.展开更多
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金financially supported by the National Science Fund for Distinguished Young Scholars,China(No.52025041)the National Natural Science Foundation of China(Nos.52450003,U2341267,and 52174294)+1 种基金the National Postdoctoral Program for Innovative Talents,China(No.BX20240437)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-23-037 and FRF-TP-20-02C2)。
文摘The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.
基金supported by the National Natural Science Foundation of China(No.51706105)。
文摘Al/NH_(4)CoF_(3)-Φ(Φ=0.5,1.0,1.5,2.0,and 3.0)binary composites and Al-NH_(4)CoF_(3)@P(VDF-HFP)ternary composites are fabricated via ultrasonication-assisted blending and electrostatic spraying.The effect of equivalence ratio(Φ)on the reaction properties is systematically investigated in the binary Al/NH_(4)CoF_(3)system.For ternary systems,electrostatic spraying allows both components to be efficiently encapsulated by P(VDF-HFP)and to achieve structural stabilization and enhanced reactivity through synergistic interfacial interactions.Morphological analysis using SEM/TEM revealed that P(VDF-HFP)formed a protective layer on Al and NH_(4)CoF_(3)particles,improving dispersion,hydrophobicity(water contact angle increased by 80.5%compared to physically mixed composites),and corrosion resistance.Thermal decomposition of NH_(4)CoF_(3)occurred at 265℃,releasing NH_(3)and HF,which triggered exothermic reactions with Al.The ternary composites exhibited a narrowed main reaction temperature range and concentrated heat release,attributed to improved interfacial contact and polymer decomposition.Combustion tests demonstrated that Al-NH_(4)CoF_(3)@P(VDF-HFP)achieved self-sustaining combustion.In addition,a simple validation was done by replacing the Al component in the aluminium-containing propellant,demonstrating its potential application in the propellant field.This work establishes a novel strategy for designing stable,high-energy composites with potential applications in advanced propulsion systems.
基金supported by the National Natural Science Foundation of China(Grant No.12402268)the Fundamental Research Funds for the Central Universities(Grant No.30925010410)。
文摘The core components of an aircraft and the source of its lift are its wings,but lift generation is disrupted by the high temperature and pressure generated on the wing surface when an aircraft gun is fired.Here,to investigate how this process influences the aerodynamic parameters of aircraft wings,the k-ωshearstress-transport turbulence model and the nested dynamic grid technique are used to analyze numerically the transient process of the muzzle jet of a 30-mm small-caliber aircraft gun in highaltitude(10 km)flight with an incoming Mach number of Ma=0.8.For comparison,two other models are established,one with no projectile and the other with no wing.The results indicate that when the aircraft gun is fired,the muzzle jet acts on the wing,creating a pressure field thereon.The uneven distribution of high pressure greatly reduces the lift of the aircraft,causing oscillations in its drag and disrupting its dynamic balance,thereby affecting its flight speed and attitude.Meanwhile,the muzzle jet is obstructed by the wing,and its flow field is distorted and deformed,developing upward toward the wing.Because of the influence of the incoming flow,the shockwave front of the projectile changes from a smooth spherical shape to an irregular one,and the motion parameters of the projectile are also greatly affected by oscillations.The present results provide an important theoretical basis for how the guns of fighter aircraft influence the aerodynamic performance of the wings.
基金supported by the National Natural Science Foundation of China(Nos.U2341249,12005076,22205112)the Fundamental Research Funds for the Central Universities(No.2025201012)。
文摘The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites.
基金the National Natural Science Foundation of China(Grant No.U2441263)for financial support of this work。
文摘In composite solid propellants with high aluminum(Al)content and low burning rate,incomplete combustion of the Al powder may occur.In this study,varying lithium(Li)content in Al-Li alloy powder was utilized instead of pure aluminum particles to mitigate agglomeration and enhance the combustion efficiency of solid propellants(Combustion efficiency herein refers to the completeness of metallic fuel oxidation,quantified as the ratio of actual-to-theoretical energy released during combustion)with high Al content and low burning rates.The impact of Al-Li alloy with different Li contents on combustion and agglomeration of solid propellant was investigated using explosion heat,combustion heat,differential thermal analysis(DTA),thermos-gravimetric analysis(TG),dynamic high-pressure combustion test,ignition experiment of small solid rocket motor(SRM)tests,condensation combustion product collection,and X-ray diffraction techniques(XRD).Compared with pure Al,Al-Li alloys exhibit higher combustion heat,which contributes to improved combustion efficiency in Al-Li alloy-containing propellants.DTA and TG analyses demonstrated higher reactivity and lower ignition temperatures for Al-Li alloys.High-pressure combustion experiments at 5 MPa showed that Al-Li alloy fuel significantly decreases combustion agglomeration.The results from theφ75 mm andφ165 mm SRM and XRD tests further support this finding.This study provides novel insights into the combustion and agglomeration behaviors of high-Al,low-burning-rate composite solid propellants and supports the potential application of Al-Li alloys in advanced propellant formulations.
文摘Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management.
基金financially supported by the National Natural Science Foundation of China(No.22309067)the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering,China(No.KL21-05)the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology,China(No.XTCX202404)。
文摘This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.
基金supported by the National Natural Science Foundation of China(22209006,21935001)the Natural Science Foundation of Shandong Province(ZR2022QE009)+1 种基金Fundamental Research Funds for the Central Universities(buctrc202307)the Beijing Natural Science Foundation(Z210016).
文摘Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.
基金The National Key Research and Development Program of China(No.2023YFC3805005)Shanghai Municipal Science and Technology Commission Research Program(No.22DZ1201404).
文摘A buckling-restrained steel plate shear wall(BRSPSW)structure with butterfly-shaped links on the lateral sides is introduced to improve the cooperative perfor-mance between the BRSPSW and the boundary frames.A one-span two-story concrete-filled steel tube(CFT)column frame specimen equipped with lateral-side butterfly-shaped linked BRSPSWs(LBL-BRSPSWs)is evaluated under low-cycle reversed loading.A finite element(FE)model is developed and validated based on the test results.This FE model accurately simulates the failure modes and load-dis-placement curves.Parametric analyses are conducted on the butterfly-shaped links.The results show that the interactions between the CFT column frame and LBL-BRSPSWs are sig-nificantly influenced by the width ratio of the butterfly-shaped links,while the taper ratio and aspect ratio have relatively minor influences.Compared with traditional steel shear walls with four-sided connections,LBL-BRSPSWs reduce the additional axial forces and bending moments in the frame columns by 28%to 73%and 17%to 87%,respectively,with only a 9%to 30%decrease in the lateral resistance.The experimental and parametric analysis results indicate that setting butterfly-shaped links on the lateral sides of BRSPSWs can significantly enhance their cooperative performance with the boundary frame.The butterfly-shaped link width ratio has a linear relationship with the lateral-resistance performance of the specimens and the additional internal forces in the frame columns.To ensure that LBL-BRSPSW fails prior to the column frames,the link width ratio should be optimized.
基金supported in part by the National Natural Science Foundation of China(62125306)Zhejiang Key Research and Development Project(2024C01163)the State Key Laboratory of Industrial Control Technology,China(ICT2024A06)
文摘In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.
文摘The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM.
基金National Natural Science Foundation of China(No.22275150)。
文摘To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.
基金support given by the Fundamental Research Program of Shanxi Province(Grant No.202203021212152)。
文摘The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-healing function have problems such as irregular particle shape and uneven distribution of components,which affect the efficient play of self-healing function.In this paper,HMX-based energetic microspheres with self-healing function were successfully prepared by microchannel technology,which showed excellent self-healing effect in both Polymer-bonded explosives(PBXs)and Composite solid propellants(CSPs).The experimental results show that the HMX-based energetic microspheres with different binder contents prepared by microchannel technology show regular shape,HMX crystal particles are uniformly wrapped by self-healing binder(GAPU).When the content of GAPU in HMX-based energetic microspheres is 10%,PBXs show excellent self-healing effect and mechanical safety is improved by 400%(raw HMX vs S4,5 J vs 25 J).As a high-energy component,the burning rate of CSPs is increased by 359.4%,the time(burning temperature>1700℃)is prolonged by 333.3%,and the maximum impulse force is increased by 107.3%(CSP-H vs CSP-S4,0.84 mm/s vs 3.87 mm/s,0.06 s vs 0.26 s,0.82 m N vs 1.70 m N).It also has excellent storage performance.The preparation of HMX-based energetic microspheres with self-healing function by microchannel technology provides a new strategy to improve the storage performance of ECMs and the combustion performance of CSPs.
基金Funded by National Natural Science Foundation of China(No.52108188)State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.SYSJJ2024-15)+3 种基金State Key Laboratory of Mountain Bridge and Tunnel Engineering,Chongqing Jiaotong University(No.SKLBT-2301)Opening Project of State Key Laboratory of Green Building Materials(No.2022GBM10)Open Research Fund of Key Laboratory of Engineering Materials of Ministry of Water Resources,China Institute of Water Resources and Hydropower Research(No.EMF202407)General Project of Science and Technology Plan of Beijing Municipal Commission of Education(No.KM202110005018)。
文摘This article investigated the factors and mechanisms that affected the workability and mechanical properties of cement paste incorporating nano-TiO_(2).The findings indicated that,for nano-TiO_(2)aqueous solution concentrations of 3%,6%,9%,and 12%,the optimal dispersion effect was achieved with an ultrasonic dispersion time of 20 minutes.Specifically,at a 6%nano-TiO_(2)content,both the workability and mechanical performance of the cement paste were enhanced.Furthermore,while nano-TiO_(2)did not alter the types of hydration products present in the cement paste,it did increase the amount of C-S-H gels.This enhancement was attributed to a higher number of nucleation sites for hydration products,which promoted hydration and reduced the porosity of the cement paste.
基金supported by the National Natural Science Foundation of China(72231008,72171193,and 72071153)the Science and Technology Innovation Group Program of Shaanxi Province(2024RS-CXTD-28)the Open Fund of Intelligent Control Laboratory(ICL-2023-0304).
文摘Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digital engineering.Due to their highly integrated nature,aeroengines present challenges in performance evaluation because their test-run data are high-dimensional,large-scale,and exhibit strong nonlinear correlations among test indicators.To solve this problem,this study proposes a unified framework of the comprehensive performance evaluation of aeroengines to assess performance objectively and globally.Specifically,the network model and the dynamics model of aeroengine performance are constructed driven by test-run data,which can explain the patterns of system state changes and the internal relationship,and depict the system accurately.Based on that,three perturbations in the model are used to simulate three fault modes of aeroengines.Moreover,the comprehensive performance evaluation indexes of aeroengines are proposed to evaluate the performance dynamically from two dimensions,the coupling performance and the activity performance.Thirteen test-run qualified and four test-run failed aeroengines are used to validate and establish the qualified ranges.The results demonstrate that the comprehensive evaluation indexes can distinguish test-run qualified and test-run failed aeroengines.By changing the dynamic parameters,the comprehensive performance under any thrust and inlet guide vanes(IGV)angle can be estimated,broadening the test-run scenarios beyond a few typical states.This novel approach offers significant advancements for the comprehensive performance evaluation and management of aeroengines,paving the way for future PHM and aeroengine digital engineering developments.
基金supported by National Natural Science Foundation of China(Nos.12105269,12075218 and 12175210)。
文摘Obtaining inertial fusion energy requires higher gain in laser indirect drive inertial confinement fusion(ICF),but traditional cylindrical hohlraums face two persistent challenges:low energy coupling efficiency from the hohlraum to the capsule and severe inner beam interception by outer gold bubbles,both needing optimization for improved ICF performance.In this paper,a new domed-rugby hohlraum design is proposed.The novel and optimized hohlraum configuration increases the energy coupling efficiency by reducing the wall surface and energy loss with a rugby-shaped geometry,thereby enhancing the radiation source temperature.Simultaneously,through a special toroidal dome structure,the interaction between the outer bubble plasma and inner laser beams is mitigated,allowing the inner laser beams to reach the waist of the hohlraum.As a result,more spherical implosions are obtained and the quality of the radiation source is improved.It has been simulated that on the 100 kJ class laser facility,there is a 20%higher neutron yield.The integrated implosion performance is expected to be significantly advanced in such a novel configuration,providing a new concept for hohlraum configuration designs with a high-temperature and high-quality radiation source.
基金support by “R&D Program for Forest Science Technology(RS-2024-0040 3460)” provided by Korea Forest Service(Korea Forestry Promotion Institute)
文摘Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5].
文摘A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests were conducted on key sections of steel-concrete composite cable-stayed bridges to analyze the stress-strain evolution of wet joints under environmental factors,constraints,and complex construction processes.The coordinated working performance of the bridge decks was also analyzed.The results indicate that temperature is the key factor affecting the stresses and strains in wet joint concrete.Approximately 7 days after casting the wet joint concrete,the strains at each measurement point of the wet joint are approximately negatively correlated with the temperature change at the measurement point.Different locations within the wet joints have respective impacts,presenting potential weak points.Construction conditions have a certain impact on the stress and strain of the wet joint.The top deck of the steel box girder is not fully bonded to the bottom surface of the wet joints,resulting in a certain strain difference after loading.To further analyze the cooperative working performance of steel box girders and concrete wet joint bridge deck systems,finite element analysis was conducted on composite girder structures.A stiffness calculation method for shear connectors based on numerical simulation was proposed.The results indicate that strain differences can cause interface slip in composite girders.This slip leads to increased deflection of the composite girders and increased tensile stress in the bottom plate of the steel box girders.This study clarifies the stress conditions and factors affecting wet joints during construction,preventing early cracking,and offers precise data for a full bridge finite element model.
文摘Amid the accelerating process of digital transformation,electronic performance monitoring has become an essential tool in organizational management.As a process that utilizes information technology to observe,record,and analyze employees’work behaviors and performance,electronic performance monitoring not only enhances organizational efficiency and optimizes decision-making support but also exerts a profound influence on employees’psychological states and behavioral responses.This paper systematically reviews the conceptual evolution,measurement methods,and related research progress of electronic performance monitoring.The findings reveal that the definition of electronic performance monitoring has evolved dynamically from a“technological tool”to an“organizational practice,”and its measurement approaches have developed from a single-dimensional to a multi-dimensional perspective,encompassing aspects such as monitoring purpose,monitoring intensity,and monitoring feedback.Existing empirical studies indicate that different types of electronic performance monitoring,such as developmental and preventive monitoring,have distinct impacts on employees’job performance,innovative behavior,and psychological responses.Overall,developmental monitoring tends to foster positive behaviors and creativity,whereas preventive monitoring may trigger psychological resistance and counterproductive work behaviors.This review provides a theoretical foundation for understanding the dual-edged effects of electronic performance monitoring and lays the groundwork for developing localized measurement instruments and exploring its underlying mechanisms in future research.