The bglS gene encoding endo-1,3-1,4-β-glucanase from Bacillus subtil& was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeas...The bglS gene encoding endo-1,3-1,4-β-glucanase from Bacillus subtil& was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeast mating pheromone a-factor (MFals), and ADH1 terminator with G418-resistance as the selected marker, was constructed. Then one of the PEP4 allele of Saccharomyces cerevisiae WZ65 strain was replaced by bglS expression cassette using chromosomal integration of polymerase chain reaction (PCR)-mediated homologous recombination, and the bglS gene was expressed simultaneously. The recombinant strain S. cerevisiae (SC-βG) was preliminarily screened by the clearing hydrolysis zone formed after the barley β-glucan was hydrolyzed in the plate and no proteinase A (PrA) activity was measured in fermenting liquor. The results of PCR analysis of genome DNA showed that one of the PEP4 allele had been replaced and bglS gene had been inserted into the locus of PEP4 gene in recombinant strains. Different endo-1,3-1,4-β-glucanase assay methods showed that the recombinant strain SC-βG had high endo-1,3-1,4-β-glucanase expression level with the maximum of 69.3 U/(h·ml) after 60 h of incubation. Meanwhile, the Congo Red method was suitable for the determination of endo-1,3-1,4-β-glucanase activity during the actual brewing process. The current research implies that the constructed yeast strain could be utilized to improve the industrial brewing property of beer.展开更多
Proteinase A (PrA), encoded by PEP4 gene, is a key enzyme in the vacuoles of Saccharomyces cerevisiae. We characterized the effects of PrA on cell growth and glucose metabolism in the industrial S. cerevisiae WZ65. ...Proteinase A (PrA), encoded by PEP4 gene, is a key enzyme in the vacuoles of Saccharomyces cerevisiae. We characterized the effects of PrA on cell growth and glucose metabolism in the industrial S. cerevisiae WZ65. It was observed that the lag phase of cell growth of partial PEP4 gene deletion mutant (36 h) and PrA-negative mutant (48 h) was significantly extended, compared with the wild type strain (24 h) (P〈0.05), but PrA had no effect on glucose metabolism either under shaking or steady state cultivations. The logistic model was chosen to evaluate the effect of PrA on S. cerevisiae cell growth, and PrA was found to promote cell growth against insufficient oxygen condition in steady state cultivation, but had no effect in shaking cultivation. The effects of glucose starvation on cell growth of partial PEP4 gene deletion strain and PrA-negative mutant were also evaluated. The results show that PrA partial deficiency increased the adaption ofS. cerevisiae to unfavorable nutrient environment, but had no effect on glucose metabolism under the stress of low glucose. During heat shock test, at 60 ℃ the reduced cell viability rate (RCVR) was 10% for the wild type S. cerevisiae and 90% for both mutant strains (P〈0.01), suggesting that PrA was a negative factor for S. cerevisiae cells to survive under heat shock. As temperatures rose from 60 ℃ to 70℃, the wild type S. cerevisiae had significantly lower relative glucose consumption rate (RGCR) (61.0% and 80.0%) than the partial mutant (78.0% and 98.5%) and the complete mutant (80.0% and 98.0%) (P〈0.05), suggesting that, in coping with heat shock, cells of the PrA mutants increased their glucose consumption to survive. The present study may provide meaningful information for brewing industry; however, the role of PrA in industrial S. cerevisiae physiology is complex and needs to be further investigated.展开更多
基金the National Hi-Tech Research and Develop-ment Program (863) of China (No. 2007AA10Z315)the Natural Science Foundation of Zhejiang Province, China (No. Z304076)
文摘The bglS gene encoding endo-1,3-1,4-β-glucanase from Bacillus subtil& was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeast mating pheromone a-factor (MFals), and ADH1 terminator with G418-resistance as the selected marker, was constructed. Then one of the PEP4 allele of Saccharomyces cerevisiae WZ65 strain was replaced by bglS expression cassette using chromosomal integration of polymerase chain reaction (PCR)-mediated homologous recombination, and the bglS gene was expressed simultaneously. The recombinant strain S. cerevisiae (SC-βG) was preliminarily screened by the clearing hydrolysis zone formed after the barley β-glucan was hydrolyzed in the plate and no proteinase A (PrA) activity was measured in fermenting liquor. The results of PCR analysis of genome DNA showed that one of the PEP4 allele had been replaced and bglS gene had been inserted into the locus of PEP4 gene in recombinant strains. Different endo-1,3-1,4-β-glucanase assay methods showed that the recombinant strain SC-βG had high endo-1,3-1,4-β-glucanase expression level with the maximum of 69.3 U/(h·ml) after 60 h of incubation. Meanwhile, the Congo Red method was suitable for the determination of endo-1,3-1,4-β-glucanase activity during the actual brewing process. The current research implies that the constructed yeast strain could be utilized to improve the industrial brewing property of beer.
基金Project (No. 2007AA10Z315) supported by the Hi-Tech Research and Development Program (863) of China
文摘Proteinase A (PrA), encoded by PEP4 gene, is a key enzyme in the vacuoles of Saccharomyces cerevisiae. We characterized the effects of PrA on cell growth and glucose metabolism in the industrial S. cerevisiae WZ65. It was observed that the lag phase of cell growth of partial PEP4 gene deletion mutant (36 h) and PrA-negative mutant (48 h) was significantly extended, compared with the wild type strain (24 h) (P〈0.05), but PrA had no effect on glucose metabolism either under shaking or steady state cultivations. The logistic model was chosen to evaluate the effect of PrA on S. cerevisiae cell growth, and PrA was found to promote cell growth against insufficient oxygen condition in steady state cultivation, but had no effect in shaking cultivation. The effects of glucose starvation on cell growth of partial PEP4 gene deletion strain and PrA-negative mutant were also evaluated. The results show that PrA partial deficiency increased the adaption ofS. cerevisiae to unfavorable nutrient environment, but had no effect on glucose metabolism under the stress of low glucose. During heat shock test, at 60 ℃ the reduced cell viability rate (RCVR) was 10% for the wild type S. cerevisiae and 90% for both mutant strains (P〈0.01), suggesting that PrA was a negative factor for S. cerevisiae cells to survive under heat shock. As temperatures rose from 60 ℃ to 70℃, the wild type S. cerevisiae had significantly lower relative glucose consumption rate (RGCR) (61.0% and 80.0%) than the partial mutant (78.0% and 98.5%) and the complete mutant (80.0% and 98.0%) (P〈0.05), suggesting that, in coping with heat shock, cells of the PrA mutants increased their glucose consumption to survive. The present study may provide meaningful information for brewing industry; however, the role of PrA in industrial S. cerevisiae physiology is complex and needs to be further investigated.