Electrospinning has gained significant importance across various fields,including biomedicine,filtration,and packaging due to the control it provides over the properties of the resulting materials,such as fiber diamet...Electrospinning has gained significant importance across various fields,including biomedicine,filtration,and packaging due to the control it provides over the properties of the resulting materials,such as fiber diameter and membrane thickness.Chitosan is a biopolymer that can be utilized with both natural and synthetic copolymers,owing to its therapeutic potential,biocompatibility,and biodegradability.However,producing electrospun chitosan is challenging due to its high solution viscosity,which often results in the formation of beads instead of uniform fibers.To address this issue,the spinnability of chitosan is significantly enhanced,and the production of continuous nanofibers is facilitated by combining it with polymers such as polyethylene oxide(PEO)in suitable ratios.These chitosan–PEO nanofibers are primarily used in biomedical applications,including wound healing,drug delivery systems,and tissue engineering scaffolds.Additionally,they have shown promise in water treatment,filtration membranes,and packaging.Among all the nanofiber mats,chitosan/PEO-AC had the smallest fiber diameter(83±12.5 nm),chitosan/PEO_45S5 had the highest tensile strength(1611±678 MPa).This comprehensive review highlights recent advancements,ongoing challenges,and future directions in the electrospinning of chitosan-based fibers assisted by PEO.展开更多
Plasma electrolytic oxidation is a well-known technique for surface modification of biomedical magnesium alloys,with good corrosion protection and the ability to produce biocompatible and bioactive coatings.In this st...Plasma electrolytic oxidation is a well-known technique for surface modification of biomedical magnesium alloys,with good corrosion protection and the ability to produce biocompatible and bioactive coatings.In this study,calcium-phosphate coatings were produced on WE43 magnesium alloy for use,as orthopedic implants.Coating formation was prepared using different oxidation parameters with various duty ratios(DR)of 15,25 and 50%and current ratios(R)-2 or 1.6.Application of R with excess cathodic current(R>1)in processes with DR≥25%allowed attaining the soft-sparking regime(SSR)that resulted in thicker oxide coatings with higher degree of crystallinity compared to the films obtained without SSR.The results of the corrosion tests contributed to a noticeable improvement in the corrosion resistance of the magnesium alloy.Optimization of the oxidation parameters allowed the selection of the variants with the most favorable degradation behavior over the tested immersion period,indicating a successful modification of the magnesium alloy surface to obtain an implant biomaterial capable of providing controlled degradation.Furthermore,biological evaluation of the produced coatings showed that the proposed surface modifications significantly reduced the cytotoxic effects observed in direct contact with the material while still maintaining the cell proliferation-promoting effects of the material eluents.展开更多
文摘Electrospinning has gained significant importance across various fields,including biomedicine,filtration,and packaging due to the control it provides over the properties of the resulting materials,such as fiber diameter and membrane thickness.Chitosan is a biopolymer that can be utilized with both natural and synthetic copolymers,owing to its therapeutic potential,biocompatibility,and biodegradability.However,producing electrospun chitosan is challenging due to its high solution viscosity,which often results in the formation of beads instead of uniform fibers.To address this issue,the spinnability of chitosan is significantly enhanced,and the production of continuous nanofibers is facilitated by combining it with polymers such as polyethylene oxide(PEO)in suitable ratios.These chitosan–PEO nanofibers are primarily used in biomedical applications,including wound healing,drug delivery systems,and tissue engineering scaffolds.Additionally,they have shown promise in water treatment,filtration membranes,and packaging.Among all the nanofiber mats,chitosan/PEO-AC had the smallest fiber diameter(83±12.5 nm),chitosan/PEO_45S5 had the highest tensile strength(1611±678 MPa).This comprehensive review highlights recent advancements,ongoing challenges,and future directions in the electrospinning of chitosan-based fibers assisted by PEO.
基金funded by Silesian University of Technology,no.07/020/BKM24/0104.
文摘Plasma electrolytic oxidation is a well-known technique for surface modification of biomedical magnesium alloys,with good corrosion protection and the ability to produce biocompatible and bioactive coatings.In this study,calcium-phosphate coatings were produced on WE43 magnesium alloy for use,as orthopedic implants.Coating formation was prepared using different oxidation parameters with various duty ratios(DR)of 15,25 and 50%and current ratios(R)-2 or 1.6.Application of R with excess cathodic current(R>1)in processes with DR≥25%allowed attaining the soft-sparking regime(SSR)that resulted in thicker oxide coatings with higher degree of crystallinity compared to the films obtained without SSR.The results of the corrosion tests contributed to a noticeable improvement in the corrosion resistance of the magnesium alloy.Optimization of the oxidation parameters allowed the selection of the variants with the most favorable degradation behavior over the tested immersion period,indicating a successful modification of the magnesium alloy surface to obtain an implant biomaterial capable of providing controlled degradation.Furthermore,biological evaluation of the produced coatings showed that the proposed surface modifications significantly reduced the cytotoxic effects observed in direct contact with the material while still maintaining the cell proliferation-promoting effects of the material eluents.