A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established ...A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.展开更多
Several simultaneous observations are presented of Syzygy effects during two solar eclipses, performed with torsinds and Foucault pendulums. The experiments/measurements were of a simple nature, conducted in several o...Several simultaneous observations are presented of Syzygy effects during two solar eclipses, performed with torsinds and Foucault pendulums. The experiments/measurements were of a simple nature, conducted in several of places in Romania and Ukraine. It is shown that during Syzygy effects both the torsind and the Foucault pendulum exhibit specific reactions: the torsind’s disk is rotated, whereas the direction of the swing plane, the period, the eccentricity and the chirality of the ellipse of oscillation of the Foucault pendulum are all altered. We term all these perturbations “Syzygy effects” and found that they take place even when the devices are in locations where the eclipse is not visible and even when they are underground. An unusual time shifts?between the responses of the devices and the maximum phase of the eclipse is detected. The importance of simultaneous simple observations of astronomical phenomena using these two devices of fundamentally different types is emphasized.展开更多
In this paper, a new intelligent control method is introduced, which combines stipulations, optimal control method with knowledge based control. Using nonlinear programming method and expert experience for the compli...In this paper, a new intelligent control method is introduced, which combines stipulations, optimal control method with knowledge based control. Using nonlinear programming method and expert experience for the complicated nonlinear object, the good control result can be achieved. The effect of this method is shown by a simulation of three stage inverted pendulums.展开更多
Accurate thrust assessment is crucial for characterizing the performance of micro-thrusters.This paper presents a comprehensive evaluation of the thrust generated by a needle-type indium field emission electric propul...Accurate thrust assessment is crucial for characterizing the performance of micro-thrusters.This paper presents a comprehensive evaluation of the thrust generated by a needle-type indium field emission electric propulsion(In-FEEP)micro-thruster using three methods based on a pendulum:direct thrust measurement,indirect plume momentum transfer and beam current diagnostics.The experimental setup utilized capacitive displacement sensors for force detection and a voice coil motor as a feedback actuator,achieving a resolution better than 0.1μN.Key performance factors such as ionization and plume divergence of ejected charged particles were also examined.The study reveals that the high applied voltage induces significant electrostatic interference,becoming the dominant source of error in direct thrust measurements.Beam current diagnostics and indirect plume momentum measurements were conducted simultaneously,showing strong agreement within a deviation of less than 0.2N across the operational thrust range.The results from all three methods are consistent within the error margins,verifying the reliability of the indirect measurement approach and the theoretical thrust model based on the electrical parameters of In-FEEP.展开更多
When a coin is tossed to a gravity well,it will spiral instead of falling directly to the center.Inspired by this phenomenon,a gravity well-inspired double friction pendulum system(GW-DFPS)is developed to extend the l...When a coin is tossed to a gravity well,it will spiral instead of falling directly to the center.Inspired by this phenomenon,a gravity well-inspired double friction pendulum system(GW-DFPS)is developed to extend the length of sliding trajectories of bridge superstructures during pulse-like near-fault earthquakes.As a result,a greater amount of energy will be dissipated due to the frictional sliding of the isolators.The GW-DFPS consists of a spherical surface and an outer surface described by a 1/x or logarithmic function to build gravity well.Full-scale isolators were fabricated and their response was characterized considering various parameters such as the friction material of slider,surface roughness of sliding surfaces,and applied vertical loads.Additionally,a finite element model of the isolator was created using the experimental test data.Numerical simulations were performed on a case-study bridge structure isolated using both a conventional DFPS system and the proposed GW-DFPS systems.The experimental results reveal that the proposed isolators exhibit stable response under vertical loads varying from 200 kN to 1000 kN with a negative stiffness response when the isolator slides at the outer sliding surface.The numerical simulations of the selected bridge structure demonstrate that the GW-DFPS significantly extends the sliding trajectory lengths of the superstructure during half of the earthquake pulses,resulting in increased energy dissipation during this interval.The kinetic energies of the bridge isolated by GW-DFPS are consistently lower than those of the bridge isolated by the other two kinds of isolators,resulting lower shear forces on the bridge.展开更多
The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a mult...The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion.展开更多
Walking is the basic locomotion pattern for bipedal robots.The walking pattern is widely generated using the linear inverted pendulum model.The linear inverted pendulum motion of each support period can be designed as...Walking is the basic locomotion pattern for bipedal robots.The walking pattern is widely generated using the linear inverted pendulum model.The linear inverted pendulum motion of each support period can be designed as a walk primitive to be connected to form a walking trajectory.A novel method of integrating double support phase into the walk primitive was proposed in this article.The method describes the generation of walking patterns using walk primitives with double support,specifically for lateral plane including walking in place,walking for lateral,and walking initiation,and for sagittal plane including fixed step length walking,variable step length walking,and walking initiation.Compared to walk primitives without double support phase,those with double support phase reduce the maximum speed required by the robot and eliminate the need to adjust foothold for achieving continuous speed.The performance of the proposed method is validated by simulations and experiments on Neubot,a position-controlled biped robot.展开更多
In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the p...In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position.Grey Wolf Optimization-based Linear Quadratic Regulator(GWO-LQR)and GWO-based Fuzzy LQR(FLQR)control algorithms are used in the control process.To improve the performance of the LQR and FLQR methods,the optimum values of the coefficients corresponding to the foot points of the membership functions are determined by the GWO algorithm.Both a graphic and a numerical analysis of the outcomes are provided.In the comparative analysis,it is observed that the GWO-based FLQR method reduces the settling time by 22.58% and the maximum peak value by 18.2% when evaluated in terms of the angular response of the pendulum arm.Furthermore,this approach outperformed comparable research in the literature with a settling time of 2.4 s.These findings demonstrate that the suggested GWO-based FLQR controlmethod outperforms existing literature in terms of the time required for the pendulum arm to reach equilibrium.展开更多
The shear pin of the friction pendulum bearing(FPB)can be made of 40Cr steel.In conceptual design,the optimal cut-off point of the shear pin is predetermined,guiding the design of bridges isolated by FPBs to maximize ...The shear pin of the friction pendulum bearing(FPB)can be made of 40Cr steel.In conceptual design,the optimal cut-off point of the shear pin is predetermined,guiding the design of bridges isolated by FPBs to maximize their isolation performance.Current researches on the shear pins are mainly based on linear elastic models,neglecting their plasticity,damage,and fracture mechanical properties.To accurately predict its cutoff behavior,the elastic-plastic degradationmodel of 40Cr steel is indeed calibrated.For this purpose,the Ramberg-Osgoodmodel,the Bao-Wierzbicki damage initiation criterion,and the linear damage evolution criterion were selected to develop the elastic-plastic degradation model of 40Cr.Subsequently,parameter calibration of this model was performed through uniaxial tensile tests on two sets of six smooth,round bars with different diameters.Following this,finite element simulations were conducted for the pure shear test of grade 10.9 high-strength bolts made of 40Cr steel,aiming to verify the elasticplastic degradation model.The results showed that the failure modes and force-displacement curves simulated by the finite element method were in good agreement with the test results.Moreover,the error between the primary characteristic parameters(initial stiffness,peak load,fracture displacement,and absorbed energy)obtained by finite element calculation and the test values was within 15%.These results demonstrated that the calibration elastic-plastic degradation model of 40Cr steel can predict the cutoff of the shear pin.展开更多
Global warming has made the regular operation of Arctic routes possible.This study selects hub ports based on infrastructure conditions and sea ice status,and then designs two pendulum route solutions for the Northeas...Global warming has made the regular operation of Arctic routes possible.This study selects hub ports based on infrastructure conditions and sea ice status,and then designs two pendulum route solutions for the Northeast Passage according to the distance between hub ports and ice-covered areas.We employ an evaluation framework combining annual profit metrics with discounted net present value(NPV)analysis,conducting probabilistic economic assessments through Monte Carlo simulations(20,000 iterations).Key findings indicate that(1)both solutions demonstrate>90%probability of economic viability and(2)Solution I′,with hub ports closer to ice-covered areas than those in Solution II,yields 5.02%higher mean annual profit and 4.69%greater NPV.The results indicate that pendulum routes in the Northeast Passage can achieve economic benefits by enabling year-round regular operations.Moreover,shorter shipping distances between hub ports and ice-covered areas enhance economic viability.展开更多
1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki ...1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki et al.,2010;Englsberger et al.,2015;Xie et al.,2020).With regard to model-based gait-generation methods for uphill and downhill terrain,Kuo(2007)simulated human gait using an inverted pendulum,which provided a circular trajectory for the COM rather than a horizontal trajectory.He found that a horizontal COM trajectory consumed more muscle energy.Massah et al.(2012)utilized a 3D LIPM and the concept of zero moment point(ZMP).They developed a trajectory planner using the semi-elliptical motion equations of an NAO humanoid robot and simulated walking on various sloped terrains using the Webots platform.展开更多
A novel friction pendulum system (FPS) with dual rollers is studied based on the multibody dynamics theory. By analyzing kinematic characteristics of the system, it is reduced to a one degree-of-freedom system. Then...A novel friction pendulum system (FPS) with dual rollers is studied based on the multibody dynamics theory. By analyzing kinematic characteristics of the system, it is reduced to a one degree-of-freedom system. Then the equation of motion for the system is analytically derived by applying the theorem of the relative kinetic energy for a system of particles in differential form in the non-inertial reference system described as a nonlinear differential equation. In the case of the small angular displacement, the natural frequency of the corresponding undamped linear system is obtained, which is consistent with the experimental observation. The derived equation is useful for the study of dynamic characteristics of novel FPS, and its solution directly expedites the simulation of the system in a control loop, and further facilitates the semi-active control process including novel FPS.展开更多
A 'Human-Imitating Intelligent Control Theory' with 'generalized reduction' and 'Human Imitating' concepts as its kernel is proposed. And a world puzzlein the control circles is solved successf...A 'Human-Imitating Intelligent Control Theory' with 'generalized reduction' and 'Human Imitating' concepts as its kernel is proposed. And a world puzzlein the control circles is solved successfully based on this theory. The puzzle is thewell-known 'triple inverted pendulum control' using a SINGLE motor. A human-imitating intelligent technique to control inverted pendulum is here described. The success. ful experimental results show that our control objective can be achieved without a precise mathematical model of the plant. Finally, general principles of designing complexautomatic control systems based on the human-imitating intelligent control theory areconcluded.展开更多
The paper described a newly developed high performance compressed air foam system(CAFS). The effective system generates uniform foam w ith greater momentum by injecting compressed air into flowing foam solution. Foa ...The paper described a newly developed high performance compressed air foam system(CAFS). The effective system generates uniform foam w ith greater momentum by injecting compressed air into flowing foam solution. Foa m generated by this system presented superior viscous and wetting properties to water.A pendulum system was designed to measure yield stress of foam. The results pro ved the existence of yield stress of foam. And the increasing tendency of yield stress with gas fraction and bubble size has also been found out.展开更多
中国大学生物理学术竞赛(China Undergraduate Physicists’Tournament,简称CUPT)是中国借鉴国际青年物理学家锦标赛(International Young Physicists’Tournament,简称IYPT)模式创办的一项全国性物理类赛事.第六届中国大学生物理...中国大学生物理学术竞赛(China Undergraduate Physicists’Tournament,简称CUPT)是中国借鉴国际青年物理学家锦标赛(International Young Physicists’Tournament,简称IYPT)模式创办的一项全国性物理类赛事.第六届中国大学生物理学术竞赛于2015年8月19日—24日在国防科学技术大学举行.展开更多
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金Project(CXLX12_0949) supported by Research and Innovation Project for College Graduates of Jiangsu Province, ChinaProject(2013DXS03) supported by the Fundamental Research Funds for the Central Universities, China
文摘A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.
文摘Several simultaneous observations are presented of Syzygy effects during two solar eclipses, performed with torsinds and Foucault pendulums. The experiments/measurements were of a simple nature, conducted in several of places in Romania and Ukraine. It is shown that during Syzygy effects both the torsind and the Foucault pendulum exhibit specific reactions: the torsind’s disk is rotated, whereas the direction of the swing plane, the period, the eccentricity and the chirality of the ellipse of oscillation of the Foucault pendulum are all altered. We term all these perturbations “Syzygy effects” and found that they take place even when the devices are in locations where the eclipse is not visible and even when they are underground. An unusual time shifts?between the responses of the devices and the maximum phase of the eclipse is detected. The importance of simultaneous simple observations of astronomical phenomena using these two devices of fundamentally different types is emphasized.
文摘In this paper, a new intelligent control method is introduced, which combines stipulations, optimal control method with knowledge based control. Using nonlinear programming method and expert experience for the complicated nonlinear object, the good control result can be achieved. The effect of this method is shown by a simulation of three stage inverted pendulums.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFC2201001)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302001)+1 种基金the National Natural Science Foundation of China(Grant Nos.12105373,12105374,and 11927812)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.GJJ2402105).
文摘Accurate thrust assessment is crucial for characterizing the performance of micro-thrusters.This paper presents a comprehensive evaluation of the thrust generated by a needle-type indium field emission electric propulsion(In-FEEP)micro-thruster using three methods based on a pendulum:direct thrust measurement,indirect plume momentum transfer and beam current diagnostics.The experimental setup utilized capacitive displacement sensors for force detection and a voice coil motor as a feedback actuator,achieving a resolution better than 0.1μN.Key performance factors such as ionization and plume divergence of ejected charged particles were also examined.The study reveals that the high applied voltage induces significant electrostatic interference,becoming the dominant source of error in direct thrust measurements.Beam current diagnostics and indirect plume momentum measurements were conducted simultaneously,showing strong agreement within a deviation of less than 0.2N across the operational thrust range.The results from all three methods are consistent within the error margins,verifying the reliability of the indirect measurement approach and the theoretical thrust model based on the electrical parameters of In-FEEP.
基金financially supported by the National Natural Science Foundation of China(Grants 52178124,52478151).
文摘When a coin is tossed to a gravity well,it will spiral instead of falling directly to the center.Inspired by this phenomenon,a gravity well-inspired double friction pendulum system(GW-DFPS)is developed to extend the length of sliding trajectories of bridge superstructures during pulse-like near-fault earthquakes.As a result,a greater amount of energy will be dissipated due to the frictional sliding of the isolators.The GW-DFPS consists of a spherical surface and an outer surface described by a 1/x or logarithmic function to build gravity well.Full-scale isolators were fabricated and their response was characterized considering various parameters such as the friction material of slider,surface roughness of sliding surfaces,and applied vertical loads.Additionally,a finite element model of the isolator was created using the experimental test data.Numerical simulations were performed on a case-study bridge structure isolated using both a conventional DFPS system and the proposed GW-DFPS systems.The experimental results reveal that the proposed isolators exhibit stable response under vertical loads varying from 200 kN to 1000 kN with a negative stiffness response when the isolator slides at the outer sliding surface.The numerical simulations of the selected bridge structure demonstrate that the GW-DFPS significantly extends the sliding trajectory lengths of the superstructure during half of the earthquake pulses,resulting in increased energy dissipation during this interval.The kinetic energies of the bridge isolated by GW-DFPS are consistently lower than those of the bridge isolated by the other two kinds of isolators,resulting lower shear forces on the bridge.
文摘The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion.
基金supported in part by the National Key R&D Program under Grant 2018YFB1304504.
文摘Walking is the basic locomotion pattern for bipedal robots.The walking pattern is widely generated using the linear inverted pendulum model.The linear inverted pendulum motion of each support period can be designed as a walk primitive to be connected to form a walking trajectory.A novel method of integrating double support phase into the walk primitive was proposed in this article.The method describes the generation of walking patterns using walk primitives with double support,specifically for lateral plane including walking in place,walking for lateral,and walking initiation,and for sagittal plane including fixed step length walking,variable step length walking,and walking initiation.Compared to walk primitives without double support phase,those with double support phase reduce the maximum speed required by the robot and eliminate the need to adjust foothold for achieving continuous speed.The performance of the proposed method is validated by simulations and experiments on Neubot,a position-controlled biped robot.
文摘In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position.Grey Wolf Optimization-based Linear Quadratic Regulator(GWO-LQR)and GWO-based Fuzzy LQR(FLQR)control algorithms are used in the control process.To improve the performance of the LQR and FLQR methods,the optimum values of the coefficients corresponding to the foot points of the membership functions are determined by the GWO algorithm.Both a graphic and a numerical analysis of the outcomes are provided.In the comparative analysis,it is observed that the GWO-based FLQR method reduces the settling time by 22.58% and the maximum peak value by 18.2% when evaluated in terms of the angular response of the pendulum arm.Furthermore,this approach outperformed comparable research in the literature with a settling time of 2.4 s.These findings demonstrate that the suggested GWO-based FLQR controlmethod outperforms existing literature in terms of the time required for the pendulum arm to reach equilibrium.
基金The Research Start-up Fund for Talents Introduction of Huaiyin Institute of Technology(Grant No.Z301B23517).
文摘The shear pin of the friction pendulum bearing(FPB)can be made of 40Cr steel.In conceptual design,the optimal cut-off point of the shear pin is predetermined,guiding the design of bridges isolated by FPBs to maximize their isolation performance.Current researches on the shear pins are mainly based on linear elastic models,neglecting their plasticity,damage,and fracture mechanical properties.To accurately predict its cutoff behavior,the elastic-plastic degradationmodel of 40Cr steel is indeed calibrated.For this purpose,the Ramberg-Osgoodmodel,the Bao-Wierzbicki damage initiation criterion,and the linear damage evolution criterion were selected to develop the elastic-plastic degradation model of 40Cr.Subsequently,parameter calibration of this model was performed through uniaxial tensile tests on two sets of six smooth,round bars with different diameters.Following this,finite element simulations were conducted for the pure shear test of grade 10.9 high-strength bolts made of 40Cr steel,aiming to verify the elasticplastic degradation model.The results showed that the failure modes and force-displacement curves simulated by the finite element method were in good agreement with the test results.Moreover,the error between the primary characteristic parameters(initial stiffness,peak load,fracture displacement,and absorbed energy)obtained by finite element calculation and the test values was within 15%.These results demonstrated that the calibration elastic-plastic degradation model of 40Cr steel can predict the cutoff of the shear pin.
文摘Global warming has made the regular operation of Arctic routes possible.This study selects hub ports based on infrastructure conditions and sea ice status,and then designs two pendulum route solutions for the Northeast Passage according to the distance between hub ports and ice-covered areas.We employ an evaluation framework combining annual profit metrics with discounted net present value(NPV)analysis,conducting probabilistic economic assessments through Monte Carlo simulations(20,000 iterations).Key findings indicate that(1)both solutions demonstrate>90%probability of economic viability and(2)Solution I′,with hub ports closer to ice-covered areas than those in Solution II,yields 5.02%higher mean annual profit and 4.69%greater NPV.The results indicate that pendulum routes in the Northeast Passage can achieve economic benefits by enabling year-round regular operations.Moreover,shorter shipping distances between hub ports and ice-covered areas enhance economic viability.
基金supported by the National Natural Science Foundation of China(No.12332023)the Zhejiang Provincial Natural Science Foundation of China(No.LY23E050010).
文摘1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki et al.,2010;Englsberger et al.,2015;Xie et al.,2020).With regard to model-based gait-generation methods for uphill and downhill terrain,Kuo(2007)simulated human gait using an inverted pendulum,which provided a circular trajectory for the COM rather than a horizontal trajectory.He found that a horizontal COM trajectory consumed more muscle energy.Massah et al.(2012)utilized a 3D LIPM and the concept of zero moment point(ZMP).They developed a trajectory planner using the semi-elliptical motion equations of an NAO humanoid robot and simulated walking on various sloped terrains using the Webots platform.
文摘A novel friction pendulum system (FPS) with dual rollers is studied based on the multibody dynamics theory. By analyzing kinematic characteristics of the system, it is reduced to a one degree-of-freedom system. Then the equation of motion for the system is analytically derived by applying the theorem of the relative kinetic energy for a system of particles in differential form in the non-inertial reference system described as a nonlinear differential equation. In the case of the small angular displacement, the natural frequency of the corresponding undamped linear system is obtained, which is consistent with the experimental observation. The derived equation is useful for the study of dynamic characteristics of novel FPS, and its solution directly expedites the simulation of the system in a control loop, and further facilitates the semi-active control process including novel FPS.
文摘A 'Human-Imitating Intelligent Control Theory' with 'generalized reduction' and 'Human Imitating' concepts as its kernel is proposed. And a world puzzlein the control circles is solved successfully based on this theory. The puzzle is thewell-known 'triple inverted pendulum control' using a SINGLE motor. A human-imitating intelligent technique to control inverted pendulum is here described. The success. ful experimental results show that our control objective can be achieved without a precise mathematical model of the plant. Finally, general principles of designing complexautomatic control systems based on the human-imitating intelligent control theory areconcluded.
文摘The paper described a newly developed high performance compressed air foam system(CAFS). The effective system generates uniform foam w ith greater momentum by injecting compressed air into flowing foam solution. Foa m generated by this system presented superior viscous and wetting properties to water.A pendulum system was designed to measure yield stress of foam. The results pro ved the existence of yield stress of foam. And the increasing tendency of yield stress with gas fraction and bubble size has also been found out.
文摘中国大学生物理学术竞赛(China Undergraduate Physicists’Tournament,简称CUPT)是中国借鉴国际青年物理学家锦标赛(International Young Physicists’Tournament,简称IYPT)模式创办的一项全国性物理类赛事.第六届中国大学生物理学术竞赛于2015年8月19日—24日在国防科学技术大学举行.