湖泊在全球碳循环中发挥着关键作用,但水产养殖以及“退养还湖”生态恢复措施对湖泊碳源汇特征的影响尚不明确。本研究基于涡度相关法,对东太湖水产养殖区在2018年养殖阶段和2019—2020年生态恢复阶段的CO_(2)通量进行连续观测,以明确...湖泊在全球碳循环中发挥着关键作用,但水产养殖以及“退养还湖”生态恢复措施对湖泊碳源汇特征的影响尚不明确。本研究基于涡度相关法,对东太湖水产养殖区在2018年养殖阶段和2019—2020年生态恢复阶段的CO_(2)通量进行连续观测,以明确退养还湖对湖泊CO_(2)通量的影响及其驱动因素。结果表明:无论在养殖阶段还是生态恢复阶段,该湖区CO_(2)通量的季节变化均表现出生长季(5—10月)吸收CO_(2),非生长季(12月—次年3月)CO_(2)通量接近于零的特征。在生长季,CO_(2)通量还存在日间吸收、夜间排放的日变化动态,并且退养还湖后日间CO_(2)吸收通量显著增加,而夜间CO_(2)排放通量小幅增强。退养还湖后,外源有机碳输入减少,水生植物群落由沉水植物向浮叶植物转变,这显著提升了东太湖的CO_(2)吸收能力,生长季CO_(2)吸收量从2018年水产养殖阶段的182.03 g CO_(2)·m^(-2)提高至生态恢复阶段2019和2020年的384.17和629.19 g CO_(2)·m^(-2)。湖泊CO_(2)通量日变化动态受太阳辐射控制,并且退养还湖后水生植物光能利用效率和光合作用能力均提高。在日尺度上,养殖阶段湖泊CO_(2)通量受温度、太阳辐射和风速调控,退养还湖后风速对CO_(2)通量变化的影响不再显著,日间CO_(2)吸收对温度变化的敏感性Q_(10)由2018年的2.44增加至2019年的3.16和2020年的3.03;而夜间CO_(2)排放对温度变化的敏感性Q_(10)则由2018年的10.20降低至2019年的1.17和2020年的5.14。在月尺度上,养殖阶段,总氮浓度是湖泊CO_(2)通量的主控因子,归一化植被指数(NDVI)是湖泊日间CO_(2)通量的主控因子;退养还湖后,太阳辐射、温度成为湖泊CO_(2)通量的主控因子,并且湖泊日间CO_(2)通量对NDVI变化响应的敏感性增加。展开更多
Flavonoids have been reported to exert protective effect against many inflammatory diseases, while the underlying cellular mechanisms are still not completely known. In the present study, we explored the anti-inflamma...Flavonoids have been reported to exert protective effect against many inflammatory diseases, while the underlying cellular mechanisms are still not completely known. In the present study, we explored the anti-inflammation activity of 5, 7, 2', 4', 5'-pentamethoxyflavanone(abbreviated as Pen.), a kind of polymethoxylated flavonoid, both in vitro and in vivo experiments. Pen. was showed no obvious toxicity in macrophages even at high dosage treatment. Our results indicated that Pen. significantly inhibited both mR NA and protein level of proinflammatory cytokines, IL-1β, IL-6, TNF-α and iN OS, which was characteristic expressed on M1 polarized macrophages. These effects of Pen. were further confirmed by diminished expression of CD11c, the M1 macrophage surface marker. Further researches showed that the mechanism was due to that Pen. downregulated the activity of p65, key transcription factor for M1 polarization. On the other hand, Pen. also enhanced M2 polarization with upregulation of anti-inflammatory factors and increase of M2 macrophage surface markers, which lead to the balance of M1 and M2 macrophages. Moreover, in vivo research verified that Pen. treatment alleviated LPS-induced sepsis in mice by increasing survival rate, decreasing inflammatory cytokines and improving lung tissue damage. In summary, our results suggested that Pen. modulated macrophage phenotype via suppressing p65 signal pathway to exert the anti-inflammation activity.展开更多
文摘湖泊在全球碳循环中发挥着关键作用,但水产养殖以及“退养还湖”生态恢复措施对湖泊碳源汇特征的影响尚不明确。本研究基于涡度相关法,对东太湖水产养殖区在2018年养殖阶段和2019—2020年生态恢复阶段的CO_(2)通量进行连续观测,以明确退养还湖对湖泊CO_(2)通量的影响及其驱动因素。结果表明:无论在养殖阶段还是生态恢复阶段,该湖区CO_(2)通量的季节变化均表现出生长季(5—10月)吸收CO_(2),非生长季(12月—次年3月)CO_(2)通量接近于零的特征。在生长季,CO_(2)通量还存在日间吸收、夜间排放的日变化动态,并且退养还湖后日间CO_(2)吸收通量显著增加,而夜间CO_(2)排放通量小幅增强。退养还湖后,外源有机碳输入减少,水生植物群落由沉水植物向浮叶植物转变,这显著提升了东太湖的CO_(2)吸收能力,生长季CO_(2)吸收量从2018年水产养殖阶段的182.03 g CO_(2)·m^(-2)提高至生态恢复阶段2019和2020年的384.17和629.19 g CO_(2)·m^(-2)。湖泊CO_(2)通量日变化动态受太阳辐射控制,并且退养还湖后水生植物光能利用效率和光合作用能力均提高。在日尺度上,养殖阶段湖泊CO_(2)通量受温度、太阳辐射和风速调控,退养还湖后风速对CO_(2)通量变化的影响不再显著,日间CO_(2)吸收对温度变化的敏感性Q_(10)由2018年的2.44增加至2019年的3.16和2020年的3.03;而夜间CO_(2)排放对温度变化的敏感性Q_(10)则由2018年的10.20降低至2019年的1.17和2020年的5.14。在月尺度上,养殖阶段,总氮浓度是湖泊CO_(2)通量的主控因子,归一化植被指数(NDVI)是湖泊日间CO_(2)通量的主控因子;退养还湖后,太阳辐射、温度成为湖泊CO_(2)通量的主控因子,并且湖泊日间CO_(2)通量对NDVI变化响应的敏感性增加。
基金supported by the National Natural Science Foundation of China(Nos.81872916,81673487,and 81473221)"The Drug Innovation Major Project" of National Science & Technology Ministry(No.2018ZX09711001-003-007)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20161399)the Fundamental Research Funds for the Central Universities(No.020814380118)
文摘Flavonoids have been reported to exert protective effect against many inflammatory diseases, while the underlying cellular mechanisms are still not completely known. In the present study, we explored the anti-inflammation activity of 5, 7, 2', 4', 5'-pentamethoxyflavanone(abbreviated as Pen.), a kind of polymethoxylated flavonoid, both in vitro and in vivo experiments. Pen. was showed no obvious toxicity in macrophages even at high dosage treatment. Our results indicated that Pen. significantly inhibited both mR NA and protein level of proinflammatory cytokines, IL-1β, IL-6, TNF-α and iN OS, which was characteristic expressed on M1 polarized macrophages. These effects of Pen. were further confirmed by diminished expression of CD11c, the M1 macrophage surface marker. Further researches showed that the mechanism was due to that Pen. downregulated the activity of p65, key transcription factor for M1 polarization. On the other hand, Pen. also enhanced M2 polarization with upregulation of anti-inflammatory factors and increase of M2 macrophage surface markers, which lead to the balance of M1 and M2 macrophages. Moreover, in vivo research verified that Pen. treatment alleviated LPS-induced sepsis in mice by increasing survival rate, decreasing inflammatory cytokines and improving lung tissue damage. In summary, our results suggested that Pen. modulated macrophage phenotype via suppressing p65 signal pathway to exert the anti-inflammation activity.