期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Geochemical Characteristics of Muscovite and Feldspars in Pegmatites:Significance for Rare Metal Pegmatite Mineralization in the Duanfengshan Area,Hubei Province,South China
1
作者 JIANG Yuqing YUAN Lulu +3 位作者 LI Jiankang LI Peng WU Hongjie CHEN Zhenyu 《Acta Geologica Sinica(English Edition)》 2025年第5期1355-1370,共16页
The Duanfengshan deposit is a newly discovered large pegmatitic-type Nb-Ta deposit in the central section of the Jiangnan orogenic belt,South China.There are three types of pegmatite in the Duanfengshan area:microclin... The Duanfengshan deposit is a newly discovered large pegmatitic-type Nb-Ta deposit in the central section of the Jiangnan orogenic belt,South China.There are three types of pegmatite in the Duanfengshan area:microcline pegmatite,microcline-albite pegmatite and albite pegmatite.Although several geological,geochronological and geochemical studies of this deposit have been carried out,the relationships between the evolution degree of different types of pegmatites and mineralization are still unclear.We address this problem through systematic petrographic and geochemical studies of muscovite and feldspars from two representative pegmatite veins,the No.328 microcline-albite pegmatite vein,and the No.610 albite pegmatite vein.The results of electron probe microanalysis(EPMA)and laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)analyses of muscovite and K-feldspar reveal that K/Rb ratios decrease with increasing Rb,Cs,Ga,Nb and Ta contents alongside decreasing Ba and Sr contents,suggesting that magmatic differentiation played a dominant role in rare metal mineralization.A comparison of the analytical results of this study with those from rare metal pegmatites globally suggests that the No.610 vein has a high mineralization potential,whereas the No.328 vein has relatively low mineralization potential.The results from this study may be applied to the evaluation of mineralization potential for other pegmatite veins in the Duanfengshan area and other rare metal pegmatite fields with similar geological settings. 展开更多
关键词 Duanfengshan rare-metal pegmatite EPMA LA-ICP-MS magma differentiation and evolution
在线阅读 下载PDF
Genesis of LCT Pegmatites during Early Paleozoic Orogeny of the North Qinling Orogenic Belt,China:Emplacement Conditions and Structural Control 被引量:2
2
作者 CEN Jubiao FENG Yonggang +6 位作者 LIANG Ting WANG Mengxi ZHANG Jianxin TAN Xijuan ZHANG Jie GAO Jinggang HE Lei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1226-1243,共18页
The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we inv... The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures. 展开更多
关键词 LCT pegmatite emplacement mechanism emplacement condition oxygen isotope geothermometry fluid inclusion North Qinling orogenic belt
在线阅读 下载PDF
Lithium Isotopic Fractionation in Minerals from Pegmatites:Perspective of Crystal Chemistry
3
作者 Shan-Ke Liu Ben-Xun Su 《Journal of Earth Science》 SCIE CAS CSCD 2024年第6期1895-1901,共7页
Lack of information regarding lithium(Li)crystal chemistry in numerous minerals,especially those containing trace amounts of Li(ranging from a few to tens of ppm),limits our understanding of Li isotopic fractionation ... Lack of information regarding lithium(Li)crystal chemistry in numerous minerals,especially those containing trace amounts of Li(ranging from a few to tens of ppm),limits our understanding of Li isotopic fractionation in pegmatites.In this study,we examined the Li isotopic composition and Li content in various Li-poor(e.g.,quartz or feldspar)together with Li-rich(sopdumene or lepidolite)mineral phases within granitic pegmatites.We compiled a comprehensive dataset,encompassing a broad spectrum of Li contents(ranging from a few to tens of thousands of ppm)and Li isotopic values(-8‰to 41‰).The minerals exhibit distinct Li isotopic signatures.Specifically,elbaite and beryl show the highest values,while biotite displays a negative average.Compared to individual minerals,whole rocks demonstrate lower Li isotopic values,with pegmatites exhibiting the highest and non-granitic pegmatite wall rocks showing the lowest.Our study also uncovers a clear“V”shape relationship between Li isotopic values and logarithm of Li contents,with different mineral groups occupying specific regions within this shape.Furthermore,a significant correlation was observed between average Li isotopic values and Li-O(OH,F)bond lengths in various minerals.These discoveries underscore the crucial role of crystal chemistry in shaping the Li isotopic behavior in pegmatites from a statistical perspective. 展开更多
关键词 Li isotopic fractionation Li content bond length PEGMATITE crystal chemistry MINERALS
原文传递
Rare-Element Pegmatites Rocks Rich and Li of the Aïr Massif of the Tchirozerine: Mineralogy and Chemical Composition Agadez Region-Northem Niger
4
作者 Ntoumbé Mama Hamza Bassara +2 位作者 Amaya Adama Awona Paul Zéphyrin Nomenjanahary Limbisoa 《Open Journal of Applied Sciences》 2024年第1期171-181,共11页
The lithium potential in the Aïr massif is represented by mineral index of spodumene pegmatites and, lepidolite pegmatites. The mineral deposits of lithium occur in cluster or veins that cut the host rock or are ... The lithium potential in the Aïr massif is represented by mineral index of spodumene pegmatites and, lepidolite pegmatites. The mineral deposits of lithium occur in cluster or veins that cut the host rock or are located near the contact between the greenstone belt and granitic massif. The evidence of lithium is in the form of clusters or disseminated and stockwerk. Mineralogical characteristics show similarities between the Air Massif pegmatites and indicate the same homogenous source during the magma-generation process. The pegmatite rocks attracted the attention due to their wide exposure and composition, well appearance, and economically hosting of significant rare earth metals such as Sn and W. The mineralogical and petrographical investigations on the eight pegmatites rocks samples observed have a relative similarity, while a little difference in the shapes attributed to the ratio in the pegmatite rocks of the minerals. The occurrence of the kink band indicates the influence of the tectonic processes which affected the Aïr massif after the emplacement of late magmatic or post-magmatic pegmatites by injection into fractured rocks in the upper part of the crust. The Air Massif pegmatite has higher concentrations Li and of all trace elements except Hf and occasionally Zr, Ti, Sn and Mg of for the economic exploration. 展开更多
关键词 PEGMATITE Lithium Rare Elements Hydrothermal Processes Aïr Massif
在线阅读 下载PDF
Geology and Mineral Chemistry of Uranium-and Thorium-bearing Minerals in Rare-Metal(NYF)Pegmatites of Um Solimate,South Eastern Desert,Egypt
5
作者 Mohamed A.ALI Ahmed E.ABDEL GAWAD Mohamed M.GHONEIM 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第5期1568-1582,共15页
The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masse... The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masses,pockets and/or veins of very coarse-grained pegmatites,which consist mainly of K-feldspar,quartz and albite with subordinate muscovite,garnet,and biotite.Radiometric data revealed that e U-and e Th-contents of the pegmatites reach up to 39 ppm and 82 ppm,respectively.The studied pegmatites are enriched in primary U and Th minerals(uraninite,coffinite,thorianite and uranothorite)as well as Hf-rich zircon and monazite,which give rise to anomalous radioactive zones.Niobium-tantalium-bearing minerals(i.e.ferrocolumbite,microlite and uranopyrochlore),xenotime,barite,galena,fluorite,and apatite are ubiquitous,and,consequently,the studied pegmatites belong tothe Niobium-Yttrium-Fluorine-type(NYF)family.The noble metal mineralization includes argentite(Ag_(2)S),native Ni and Bi as well as bismite and bismoclite.In addition,beryl and tourmaline are observed in pegmatites near the contact with metasediments and ultramafic bodies.The observed compositional variations of Ta/(Ta+Nb)and Mn/(Mn+Fe)ratios in columbite(0.08-0.45 and 0.11-0.57,respectively)and Hf contents in zircon(3.54-6.46 wt%)may reflectan extreme degree of magmatic fractionation leading to formation of the pegmatite orebody. 展开更多
关键词 radioactivity rare-metal mineralization pegmatites U/Th-bearing minerals Um Solimate EGYPT
在线阅读 下载PDF
Petrogenetic and Metallogenetic Characteristics of the Xikeng Granitic Pegmatites, Fujian Province
6
作者 杨岳清 倪云祥 +6 位作者 郭永泉 仇年铭 陈成湖 蔡朝发 张亚萍 刘加斌 陈月仙 《Chinese Journal Of Geochemistry》 EI CAS 1988年第2期120-135,共16页
The Xikeng pegmatite field lies on the eastern margin of the south China fold system in Fujian Province,and it is located at the junction of three major tectonic units. The distribution of pegmatites is obviously cont... The Xikeng pegmatite field lies on the eastern margin of the south China fold system in Fujian Province,and it is located at the junction of three major tectonic units. The distribution of pegmatites is obviously controlled by the fold system.There exists apparent in jectionrelationship between the pegmatites and the surrounding Sinian schist and granulitite.The granitoidsextensively distributed in the field belong either to the Variscan or to the Yenshanian cycle,and it is evidentthat the pegmatites are genetically related to Variscan migmatitic granites. The pegmatites can be grouped into four types:muscovite-orthoclase-albite pegmatite(I).muscovitedlbite-orthoclase pegmatite(Ⅱ),muscovite-orthoclase-albite pegmatite(Ⅲ),and muscovite-albitespodumene pegmatite(IV).Owing to strong metasomatism and multi-stage emplacement of pegmatitic meltsolution,the sequence of interior assemblage zones in the pegmatites does not always represent the sequenceof original crystallization. The mineral composition of the pegmatites is extremely complicated.81 kinds of minerals have so farbeen found、From type I to type IV,the mineral assemblage tend to get increasingly complex.together withthe synchronous intensification of rare-metal and Sn mineralizations.Most of the type-IV pegmatites are ofeconomic value The features of fluid inclusions in the minerals are significantly different not only in different typos ofpegmatite,but also in different parts of a single pegmatite vein.Theδ18O values of migmatitic granite andpegmatites are comparatively low(9.3-10.4‰),and those of rock-forming fluids are higher than 9.5‰ Isotopic ages of the pegmatites brangs from 235 to 328 Ma with initial 87Sr/86Sr ratios being ”.715-0.746. According to the temporal and spatial relationships between the pegmatites and the migmatitic granitecombined with the features of the pegmatites themselves,it can be concluded that the Xikeng pegmatites arethe product of differentiation closely related to the migmatitic granite. 展开更多
关键词 Petrogenetic and Metallogenetic Characteristics of the Xikeng Granitic pegmatites Fujian Province TA THAN
在线阅读 下载PDF
Emplacement and Evolution History of Pegmatites and Hydrothermal Deposits, Matale District, Sri Lanka
7
作者 G.W.A.R Fernando A Pitawala T.H.N.G Amaraweera 《International Journal of Geosciences》 2011年第3期348-362,共15页
Excellent outcrops in Matale Sri Lanka provide unique insight into the emplacement and evolution history of hydrothermal and pegmatitic rocks in the central highlands of Sri Lanka. Field, structural, petrological, the... Excellent outcrops in Matale Sri Lanka provide unique insight into the emplacement and evolution history of hydrothermal and pegmatitic rocks in the central highlands of Sri Lanka. Field, structural, petrological, thermo-barometric studies in the metamorphic basement rocks in the central highlands and related hydrothermal deposits are presented in this study. Detailed petrographic and mineralogical data reveal peak metamorphic conditions for the crustal unit in the study area as 854 ± 44oC at 10.83 ± 0.86 kbar. Hydrothermal veins consisting of quartz and mica are closely related to cross-cutting pegmatites, which significantly post-date the peak metamorphic conditions of the crustal unit. Field relations indicate that the veins originated as ductile-brittle fractures have subsequently sealed by pegmatites and hydrothermal crystallization. Geological, textural and mineralogical data suggest that most enriched hydrothermal veins have evolved from a fractionated granitic melt progressively enriched in H2O, F, etc. Quartz, K-feldspar, mica, tourmaline, fluorite and topaz bear evidence of multistage crystallization that alternated with episodes of resorption. It was suggested that the level of emplacement of pegmatites of the Matale District was middle crust, near the crustal scale brittle-ductile transition zone at a temperature of about 600oC. For this crustal level and temperature range, it is considered very unlikely that intruding pegmatitic melts followed pre-existing cracks. As such the emplacement temperatures of the pegmatites could be well below the peak metamorphic estimates in the mafic granulites. The metamorphic P-T strategy and position of formation of hydrothermal deposits and pegmatites is summarized in the modified P-T-t-D diagrams. 展开更多
关键词 HYDROTHERMAL VEINS pegmatites EMPLACEMENT history BRITTLE deformation SRI Lanka
在线阅读 下载PDF
Rare Metals (Ta-Nb-Sn) Mineralization Potential of Pegmatites of Igangan Area, Southwestern Nigeria
8
作者 Olusegun G. Olisa Olugbenga A. Okunlola Ayotunde A. Omitogun 《Journal of Geoscience and Environment Protection》 2018年第4期67-88,共22页
The study was carried out to determine the rare metal mineralization potential of some pegmatites associated with metasediments in the Igangan 240 NW sheet. Geological mapping on a scale of 1:50,000 revealed the pegma... The study was carried out to determine the rare metal mineralization potential of some pegmatites associated with metasediments in the Igangan 240 NW sheet. Geological mapping on a scale of 1:50,000 revealed the pegmatites intrude metasediments and geochemical analysis for major, trace and rare earth elements were carried out using ICP MS/AES. Petrographic studies reveal a mineral assemblage of quartz, microcline and tourmaline;SEM studies revealed garnet and tourmaline to be close to the spessartine end-member and schorl respectively with albite occurring as the dominant plagioclase feldspar in the pegmatites. Result of geochemical analysis revealed SiO2 with an average of 73.91% in the whole rock pegmatite Al2O3 with an average of 13.93%, and average concentration of 0.57%, 4.3% and 4.77% for CaO, Na2O and K2O respectively. It also revealed average concentration of 29 ppm, 153 ppm, 30 ppm, 118 ppm and 129 ppm for W, Li, Ta, Nb and Sn in the mica respectively which is above the average values in the whole rock, felspars and tourmaline extracts. REE abundance in the whole rock pegmatites is low to moderate with ∑REE varying between 8 - 220 ppm, 2 - 23 ppm in feldspars and 3 - 32 ppm in mica signifying no form of REE enrichment. Geochemical analysis results and trace elemental plots such as K/Rb vs. Rb, Ta vs. Ga, Ta vs. Cs were used to assess rare metal mineralization and it revealed the pegmatites have low level of rare metal and rare earth element mineralization with average k/Rb values of 177 indicative of low fractionation levels in the pegmatites. 展开更多
关键词 RARE METALS MINERALIZATION RARE Earth Elements pegmatites
在线阅读 下载PDF
Neoproterozoic Rare Element Pegmatites from Gitarama and Gatumba Areas, Rwanda: Understanding Their Nb-Ta and Sn Mineralisation
9
作者 Jean de Dieu Ndikumana Anthony Temidayo Bolarinwa Gabriel Oladapo Adeyemi 《Open Journal of Geology》 2019年第13期1069-1083,共15页
The aim of this work was to study the petrography, geochemistry of the pegmatites, their relationship to the mineralisation in Gitarama and Gatumba areas, and current processes that occurred after the primary emplaced... The aim of this work was to study the petrography, geochemistry of the pegmatites, their relationship to the mineralisation in Gitarama and Gatumba areas, and current processes that occurred after the primary emplaced neoproterozoic rare element pegmatites. Previous works on pegmatites were geochemistry and geological maps which are not enough for focused exploration and mine planning. Therefore, geological, petrographic, geochemical studies of neoproterozoic rare element pegmatites of Gatumba and Gitarama areas in relation to their mineralisation were carried out. The samples were analysed for mineral assemblages by petrographic light microscope;major elements by ICP AES;trace and rare earth elements by ICP MS. Petrographic studies revealed the mineral assemblages included quartz, microcline, biotite and major muscovites, which implied that there was the process of muscovitisation occurred after the primary emplacement of pegmatites. The results of geochemical analysis revealed that the silica content (in wt%) ranges from 59.5 - 80.5 with an average of 67.13 (in wt%) for the weathered pegmatite in Gatumba area ,and high percentages of SiO2 (in wt%) range 73.9 - 75.0 with an average of 73.15 (in wt%) for fresh pegmatite in Gitarama area. The pegmatites from Gatumba area were altered and much enriched in Rb (227 - 3460 ppm), Cs (2.59 - 24.7 ppm), Ta (2.6 - 268 ppm), Li (40 - 9224 ppm), W (240 - 10,000 ppm), Nb (13 - 517 ppm), Sn (24 - 8870 ppm). Their enrichment is commonly used as a marker of a magmatic-hydrothermal alteration. Conversely, the pegmatites from Gitarama area showed the low to moderate concentrations in Rb (321 - 337 ppm), Cs (5.47 - 5.62 ppm), Ta (1.3 - 1.6 ppm), Li (~20 ppm), W (5540 - 6410 ppm), Nb (3.9 - 4.3 ppm), Sn (28 - 44 ppm). The variation plot of ratios: Al2O3/(Na2O + K2O) versus Al2O3/(CaO + Na2O + K2O) for the pegmatites from study areas are higher than one (A/NK vs. A/CNK > 1) indicating peraluminous, the other samples of pegmatites indicated metaluminous (A/NK > 1 and A/CNK &Sigma;REE varying between 12.1 - 72.78 ppm and 45 - 54.37 ppm respectively, signifying low to medium form of enrichment. The pegmatite from Gatumba and Gitarama areas showed the K/Rb ratios ranging from 15.74 to 80.26 and from 190.41 to 199.39 respectively. As the pegmatite samples show K/Rb ratios less than 100 are commonly accepted for mineralization, therefore the pegmatites from Gatumba area were found mineralised, conversely to the pegmatite samples from Gitarama area, which were found barren. 展开更多
关键词 pegmatites PETROGRAPHY GEOCHEMISTRY Gitarama Gatumba
在线阅读 下载PDF
Neoproterozoic U-Th-REE-bearing Pegmatites in Wadi Ibib, South Eastern Desert, Egypt: Structural and Geochemical Measures for a Syn-Tectonic Anatectic Model of Formation
10
作者 Waleed S.IBRAHIM 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期2045-2062,共18页
The Wadi Ibib area is situated in the northern part of the Neoproterozoic Hamisana Shear Zone(HSZ), which is a high strain zone evolved during the late stages of the Pan-African orogeny, likely as a tectonic escape st... The Wadi Ibib area is situated in the northern part of the Neoproterozoic Hamisana Shear Zone(HSZ), which is a high strain zone evolved during the late stages of the Pan-African orogeny, likely as a tectonic escape structure. Amphibolite facies pelitic metasedimentary windows crop out in the axial parts of the HSZ and are noticeably associated with numerous N-trending pegmatite dikes. Whole-rock geochemistry of the pegmatites reveals a peraluminous(S-type) affinity, with low K/Rb ratios and elevated concentrations of U, Th, REE, Rb, Li, Cs, Y, Nb and Ta. Structurally, the pegmatite sets intrude along the shear plane of the HSZ, corresponding to the regional N-trending tectonic fabrics, such as axial planar foliation and dextral-shearing in the metasedimentary host rock. Field relationships, including structural context, coupled with geochemical characteristics of the Wadi Ibib pegmatites, do not support their formation as a complementary part of evolved granitic magmas. Space-localized decompression-induced partial melting of peraluminous garnet-bearing metapelites was alternatively the underlying process for formation of these pegmatites. Such decompression was associated with regional escape tectonics and stress axes permutations during the late deformation stage(D3) in the evolution of the south Eastern Desert terrane, due to end-orogeny system pressure-release. 展开更多
关键词 U-Th-REE mineralization anataxis pegmatite origin Hamisana Shear Zone Wadi Ibib EGYPT
在线阅读 下载PDF
P-Li-Be Bearing Pegmatites of the South East Brazil
11
作者 Essaid Bilal Adolf Heinrich Horn Fernando Machado de Mello 《International Journal of Geosciences》 2012年第2期281-288,共8页
The P-Li-Nb pegmatites are located in the south of Brazil, in the states of Minas Gerais and Espirito Santos. They represent the largest pegmatite fields of Brazil and the richest in precious stones. Two types of pegm... The P-Li-Nb pegmatites are located in the south of Brazil, in the states of Minas Gerais and Espirito Santos. They represent the largest pegmatite fields of Brazil and the richest in precious stones. Two types of pegmatites are characterized by their mineralogical characteristics and tectonic and magmatic relations. The first group occurred during a compressive deformation phase D1 about 582 Ma and 550℃ - 700℃ and 4 - 5 kb. The second pegmatites group was formed during the decompression phase D2 (520 - 500 Ma) of the Brasiliano metamorphic rock fusion. The geochemical parameters of the P-Li-Be bearing pegmatites of the first group show the same trend fractionation, as suggested by the mineralogical composition. The variation of tourmaline and columbite-tantalite composition of the first group game again applies a change of melt composition during the regional development of the pegmatites. A systematic compositional trend seems to suggest a petrogenetic link between the pegmatites of the region. The Fe/Mn ratio of tourmaline in samples of the first group shows the same behavior as in columbite-tantalite and garnets. The simple pegmatites are transiting north in the gem-rich pegmatites. The Fe/Mn ratio not only shows qualitatively the fractionation index, the degree of regional development, but also the internal development of the body. The ratio shows a negative correlation with lithium. The Co, Zn and Nb contents are rising at first group, but falling when starting crystallization of garnet, columbite-tantalite, and Behierit. 展开更多
关键词 GEM Rich PEGMATITE Phosphate LI TOURMALINE BERYL Triphylite Ferrisiklerite Heterosite
暂未订购
Crystalline-fluid melt inclusions in aquamarines in pegmatites of different origins
12
作者 LI Zhaolin, LI Wen and ZHAI Wei Department of Earth Science, Zhongshan University, Guangzhou 510275, China 《Chinese Science Bulletin》 SCIE EI CAS 1999年第S2期154-156,共3页
THE crystalline-fluid melt inclusions in aquamarines in pegmatites from Mufushan (Hunan Prov.) andAilaoshan (Yunnan Prov.) have been studied. The research shows that there are obvious differences inthe chemical compos... THE crystalline-fluid melt inclusions in aquamarines in pegmatites from Mufushan (Hunan Prov.) andAilaoshan (Yunnan Prov.) have been studied. The research shows that there are obvious differences inthe chemical composition of the inclusions in the aquamarines, which is of great importance for studyingthe forming mechanism and origin of pegmatites. 1 General geology of pegmatites Mufushan is situated in the middle sector of the Jiangnan Ancient Land. The granitic pegmatitesmainly outcrop in granite mass of late Yanshanian (105-145 Ma) which was intruded in middle sector ofthe middle Proterozoic strata. Part of the pegmatites occur in the contact zone of the granite and the metamorphic rocks. The pegmatite veins may be divided into four types, all of them were originated from mag- 展开更多
关键词 crystalline-fluid MELT INCLUSIONS aquamarine pegmatites origin.
在线阅读 下载PDF
Geochemistry and mineral chemistry of granitic rocks from west Wadi El Gemal area,southern Eastern Desert of Egypt:Indicators for highly fractionated syn-to post-collisional Neoproterozoic felsic magmatism
13
作者 Hesham Mokhtar Adel A.Surour +2 位作者 Mokhles K.Azer Minghua Ren Amir Said 《Acta Geochimica》 2025年第1期163-188,共26页
Leucogranite,pegmatite,and aplite from selected areas in the Wadi El Gemal area in the southern Eastern Desert of Egypt were investigated geochemically for their petrogenesis.These rocks represent a significant episod... Leucogranite,pegmatite,and aplite from selected areas in the Wadi El Gemal area in the southern Eastern Desert of Egypt were investigated geochemically for their petrogenesis.These rocks represent a significant episode of felsic magmatism during the late stage of the Pan-African orogeny in the evolution of the Arabian–Nubian Shield(ANS)during the Late Neoproterozoic.On a petrographic basis,the leucogranite is sometimes garnetiferous and can be distinguished into monzogranite,syenogranite,and alkali feldspar granite.The analyses of muscovite,biotite,garnet,and apatite reveal the magmatic nature of the studied leucogranite.The investigated leucogranite,pegmatite,and aplite are alkali-calcic,calc-alkaline,and peraluminous.The peraluminous nature of these rocks is evidenced by using the chemical analyses of biotite.These studied rocks show a slight enrichment in light rare-earth elements(LREEs)and large-ion lithophile elements(LILE,especially Rb and Th),with an insignificant depletion of heavy rareearth elements(HREEs).On a geochemical basis,the leucogranite,pegmatite,and aplite in the study area crystallized from multiple-sourced melts that include mafic,metagraywake,and pelitic.They were derived from melts generated at crystallization temperatures around 568-900℃ for leucogranite,553-781℃ for pegmatite,and 639-779℃ for aplite based on the Zr saturation geothermometers,and at a pressure around 0.39-0.48 GPa,i.e.shallow depth intrusions.The studied felsic rocks have strong negative Eu anomalies,which are very consistent with an upper crust composition,indicating fractionation of feldspar cumulates.Also,they show a moderate La/Sm ratio indicating combined magmatic processes represented by partial melting and fractional crystallization.Integration of whole-rock chemical composition and mineral microanalysis suggests that felsic magmatism in the west Wadi El Gemal area produced voluminous masses of syn-to post-collisional granite,pegmatite,and aplite.An evolutionary three-stage model is presented to understand late magmatism in the ANS in terms of a geodynamic model.Such a model discusses the propagation of felsic magmatism in the ANS during syn-collisional to post-collisional stages. 展开更多
关键词 LEUCOGRANITE PEGMATITE Aplite Wadi El Gemal Petrogenesis Syn-collisional POST-COLLISIONAL
在线阅读 下载PDF
Lithium-rich tourmaline in Himalayan leucogranite:An example from the Gabo Li-rich granite-pegmatite system,Xizang,China
14
作者 Hongzhao Shi Yiyun Wang +3 位作者 Linkui Zhang Hong Liu Weikang Guo Jiangang Fu 《Acta Geochimica》 2025年第2期297-313,共17页
The Gabo lithium deposit represents a newly discovered pegmatite-type lithium deposit within the Himalayan metallogenic belt.The tourmaline-muscovite granite,the largest leucogranite in the mining area,displays a clos... The Gabo lithium deposit represents a newly discovered pegmatite-type lithium deposit within the Himalayan metallogenic belt.The tourmaline-muscovite granite,the largest leucogranite in the mining area,displays a close spatial correlation with the Li-pegmatite veins.This study aims to examine the genesis of tourmaline and evaluate the significance and potential of pegmatite lithium deposits.Tourmaline is extensively distributed in tourmaline-muscovite granite at Gabo deposit in Luozha county(Xizang).Investigation of the compositional and in situ boron isotopes of the tourmaline revealed that the tourmalines mainly belong to the schorl group and exhibit uniform elevated Li-Sn contents andδ^(11)B values(-11.6‰to-10.5‰).This indicates that the tourmaline mainly crystallized from a boron-rich granitic magma undergoing enrichment in elemental lithium during the tourmaline crystallization process.Compared with the principal rare metal leucogranite-pegmatites in the Himalayan orogen,it is proposed that the elevated lithium(Li)content of tourmaline serves as an eff ective mineral indicator for the highly evolved pegmatite-type rare metal deposits. 展开更多
关键词 TOURMALINE Genetic relationship Pegmatitic deposit Gabo Himalayan metallogenic belt
在线阅读 下载PDF
Contribution of pegmatite shells to magmatic evolution and rare metal mineralization:Insights from the Shihuiyao deposit,Inner Mongolia,Northeast China
15
作者 Zhichao Zhang Zheng Ji +5 位作者 Yusheng Zhu Hao Yang Zhenyu Chen Haoran Wu Yongzhi Wang Wenchun Ge 《Geoscience Frontiers》 2025年第3期391-407,共17页
Highly evolved granite associated with pegmatite shells exhibits significant potential for rare metal mineralization;however,the mechanisms through which these pegmatite shells contribute to magmatic evolution and rar... Highly evolved granite associated with pegmatite shells exhibits significant potential for rare metal mineralization;however,the mechanisms through which these pegmatite shells contribute to magmatic evolution and rare metal enrichment remain poorly understood.The Late Jurassic Shihuiyao Nb-Ta-(Rb-Be-Li)deposit is one of the largest rare-metal deposits in the Southern Great Xing’an Range(SGXR),Northeast China.Exploratory trenches expose distinct layered zones from top to bottom:alternating microcline pegmatite and aplite layers(zone I),topaz lepidolite albite granite and lepidolite amazonite pegmatite(zone II),and muscovite albite granite(zoneⅢ).We conducted U-Pb dating of cassiterite,monazite,and Nb-Ta oxide,monazite Nd isotopes,and whole-rock and mineral geochemistry for the three zones.Multi-mineral U-Pb ages indicate that the three zones formed during the Late Jurassic-Early Cretaceous(147-142 Ma).Geochemical analyses of whole-rock,mica,and microcline suggest an evolutionary sequence from zone I to zoneⅢ,and finally to zone II.The Zr/Hf,Nb/Ta,Y/Ho,and K/Rb ratios combined with the rare earth element(REE)tetrad effects suggest higher degree of differentiation and fluid-melt interaction of the Shihuiyao leucogranite without a pegmatite shell compared to coeval barren granites from both Shihuiyao and the SGXR.A progressive increase in the degree of evolution is evident from the leucogranite without a pegmatite shell to the leucogranite with a discontinuous shell,and ultimately to the leucogranite with a continuous shell.The pegmatite shell acted as a geochemical barrier that facilitated the accumulation of Li and F in the underlying magma,which played a crucial role in lowering the solidus temperature of the granitic magma.This process prolonged the crystallization duration while reducing melt viscosity and density,thereby creating favorable conditions for magma differentiation and fluid-melt interaction.Rapid crystallization of the earlier water-and Be-rich melt led to the Be mineralization in the pegmatite shell.Moreover,the formation of this shell served as a barrier for Li mineralization in the underlying topaz lepidolite albite granite.This study enhances our understanding of the critical contribution of pegmatite shells to magmatic evolution and rare-metal mineralization. 展开更多
关键词 Pegmatite shell Highly fractionated granite Magmatic-hydrothermal evolution Fractional crystallization Fluid-melt interaction
暂未订购
Coupled Dissolution-Precipitation Mineralized Process in Bailongshan Li Deposit,West Kunlun(NW China),Evidenced by the Mineralogy of Cassiterite,Columbite-Group Minerals and Elbaite
16
作者 Tao Hong ZhangZhang +2 位作者 Zeli Jiang Mingxi Hu Pengli Jiao 《Journal of Earth Science》 2025年第3期1033-1050,共18页
Coupled dissolution-precipitation is one of the critical processes influencing the mineralogical and geochemical evolution of pegmatites.This mechanism involves the simultaneous dissolution of primary mineral phases a... Coupled dissolution-precipitation is one of the critical processes influencing the mineralogical and geochemical evolution of pegmatites.This mechanism involves the simultaneous dissolution of primary mineral phases and the precipitation of secondary phases,driven by changes in the chemical environment,often mediated by hydrothermal fluids.The Bailongshan Li deposit,located in the West Kunlun region of northwest China,is a significant geological formation known for its rich lithium content and associated rare metals such as tantalum,niobium,and tin.This study investigates the coupled dissolution-precipitation processes that have played a crucial role in the mineralization of this deposit,focusing on key minerals,including cassiterite(Cst),columbite-group minerals(CGM),and elbaite(Elb).Using a combination of petrographic analysis,back-scattered electron(BSE)imaging,cathodoluminescence(CL)imaging,and micro X-ray fluorescence(XRF)mapping,we examined the textural and chemical characteristics of these minerals.Our findings reveal intricate patchy zoning patterns and element distributions(indicated by the Nb,Ta,W,Mn,Fe,Hf,Ti for CGM;Hf,Ti Rb,W,Nb,Ta for Cst;Ti,Zn,Fe,W,Hf,Mn,K for Elb)that indicate multiple stages of mineral alteration driven by fluid-mediated processes.The coupled dissolution-precipitation mechanisms observed in the Bailongshan deposit have resulted in significant redistribution and enrichment of economically valuable elements.The study highlights the importance of hydrothermal fluids in altering primary mineral phases and precipitating secondary phases with distinct compositions.These processes not only modified the mineralogical makeup of the pegmatite but also enhanced its economic potential by concentrating rare metals.Signatures of coupled dissolutionprecipitation processes can serve as an essential tool for mineral exploration,guiding the search for high-grade zones within similar pegmatitic formations. 展开更多
关键词 coupled dissolution-precipitation mineralized process West Kunlun MINERALOGY pegmatite Li deposit ore deposits
原文传递
Origin and geochemical characteristics of beryllium mineralization in the Zabara-Wadi El Gemal region,South Eastern Desert,Egypt
17
作者 Gehad M.Saleh Farrage M.Khaleal +6 位作者 Mohammed Z.El-Bialy Mohamed S.Kamar Mokhles K.Azer Mohamed M.Omar Mohamed N.El Dawy Ahmed Abdelaal El Saeed R.Lasheen 《Acta Geochimica》 EI CAS CSCD 2024年第6期1105-1122,共18页
Beryl is the commercial source of beryllium and several varieties of it are valued as a gemstone.To contribute to understanding the mechanism of beryl formation,we carried out detailed geological,petrographical,and ge... Beryl is the commercial source of beryllium and several varieties of it are valued as a gemstone.To contribute to understanding the mechanism of beryl formation,we carried out detailed geological,petrographical,and geochemical investigations on beryl mineralization occurrences in the Zabara-Wadi El Gemal(Z-WG)region.This region is an NW-SE trending tract that includes six berylhosting areas.The green gem variety of beryl(emerald)is restricted to phlogopite schist,pegmatite,and quartz veins.Prismatic hexagonal emerald crystals are well-developed in phlogopite schist and pegmatite.The gem variety emerald examined is sodic and Cr-dominant.It contains high concentrations of chromophore transition elements ordering Cr(up to 1511 ppm)>V(up to 242 ppm)>Sc(up to 245 ppm),giving rise to its vivid green color,refl ecting mafic-ultramafic source contribution.Among the investigated emeralds,the Sikait area contains the highest BeO(av.10.76wt.%)concentration.The compositional variability of emeralds is most likely attributed to the contribution from the host rocks.This is revealed by the examined emerald mineralization,for instance;the Abu Rusheid area(one of the best areas exposing rare metal-bearing granitoids)possesses the highest average of trace and REEs concentrations.In contrast,Um Kabu emerald has the highest contents of Co(av.20 ppm),Ni(av.299 ppm),MgO(av.8.2wt.%),Fe_(2)O_(3)(av.3.12wt.%),and CaO(avg.3.4wt.%)relative to other areas,which may be linked to contribution of ultramafic rocks exposed there.The proposed mechanism we suggest for emerald genesis is metasomatic interaction between felsic intrusions,that are enriched with K,Na,Be,Li,and B,with mafic-ultramafic rocks that are enriched in Cr,V,Mg,Fe,and Ca.This interaction is marked by the formation of phlogopite schist,the growth of emerald crystals,and desilicated pegmatite. 展开更多
关键词 Beryl chemistry Emerald genesis Phlogopite schist PEGMATITE Eastern Desert
在线阅读 下载PDF
Age and geochemical evolution of granite magmatism in Olkhon region from Caledonian syncollisional ore-free granite to the rare metal granite and pegmatite of Middle Paleozoic intraplate setting
18
作者 Viktor Antipin Valentina Makrygina +1 位作者 Larisa Kushch Nataliya Sheptyakova 《China Geology》 CAS CSCD 2024年第1期63-79,共17页
The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gnei... The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gneisses,granites and pegmatites of normal alkalinity;they belong to the type of syncollisional granites.The Middle Paleozoic Aya granite complex includes mother Aya massif of amazonite-bearing granites and several types of rare-metal pegmatites.They have elevated alkalinity,low of Ba,Sr,and high LILE and HFSE elements contents.The Aya pegmatites lie in northwest cracks of stretching and associated with the rise of the territory under the influence of the North Asian plume.These cracks and pegmatites mark the beginning of a new intraplate geodynamic setting.Two geochemical types are distinguished among the pegmatites of this complex.These are amazonite pegmatites of Li-F type with Ta mineralization and complex type pegmatite with Be-Rb-Nb-Ta and Li-F mineralization(the Ilixin vein).The Tashkiney pegmatite vein is similar to Ilixin,but lies in the gneisses of the Olkhon series.It shows high concentrations of Be,Nb,Ta,as well as W,Sn,but lacks Li and F,due to a greater depth and higher temperature of the melt crystallization of this pegmatite. 展开更多
关键词 PEGMATITE Geochemistry Submantle plume MAGMATISM Caledonian collision Middle Paleozoic intraplate setting Be-Rb-Nb-Ta-Li-F mineralization Olkhon region Russia
在线阅读 下载PDF
Genesis of the Jiajika superlarge lithium deposit,Sichuan,China:constraints from He–Ar–H–O isotopes
19
作者 Tao Liu Hai Wang +6 位作者 Shihong Tian Denghong Wang Xianfang Li Xiaofang Fu Xuefeng Hao Yujie Zhang Kejun Hou 《Acta Geochimica》 EI CAS CSCD 2023年第3期517-534,共18页
The Jiajika granitic-and pegmatite-type lithium deposit,which is in the Songpan-Garze Orogenic Belt in western Sichuan Province,China,is the largest in Asia.Previous studies have examined the geochemistry and mineralo... The Jiajika granitic-and pegmatite-type lithium deposit,which is in the Songpan-Garze Orogenic Belt in western Sichuan Province,China,is the largest in Asia.Previous studies have examined the geochemistry and mineralogy of pegmatites and their parental source rocks to determine the genesis of the deposit.However,the evolution of magmatic-hydrothermal fluids has received limited attention.We analyzed He–Ar–H–O isotopes to decipher the ore-fluid nature and identify the contribution of fluids to mineralization in the late stage of crystallization differentiation.In the Jiajika ore field,two-mica granites,pegmatites(including common pegmatites and spodumene pegmatites),metasandstones,and schists are the dominant rock types exposed.Common pegmatites derived from early differentiation of the two-mica granitic magmas before they evolved into spodumene pegmatites during the late stage of the magmatic evolution.Common pegmatites have~3He/~4He ratios that vary from 0.18 to 4.68 Ra(mean1.62 Ra),and their~(40)Ar/~(36)Ar ratios range from 426.70 to 1408.06(mean 761.81);spodumene pegmatites have~3He/~4He ratios that vary from 0.18 to 2.66 Ra(mean 0.87Ra)and their~(40)Ar/~(36)Ar ratios range from 402.13 to 1907.34(mean 801.65).These data indicate that the hydrothermal fluids were shown a mixture of crust-and mantle-derived materials,and the proportion of crustderived materials in spodumene pegmatites increases significantly in the late stage of the magmatic evolution.Theδ~(18)OH_(2)O–VSMOWvalues of common pegmatites range from 6.2‰to 10.9‰,with a mean value of 8.6‰,andδDV–SMOWvalues vary from-110‰to-72‰,with a mean o f-85‰.Theδ~(18)OH_(2)O–VSMOWvalues of spodumene pegmatites range from 5.3‰to 13.2‰,with a mean of 9.1‰,andδDV–SMOWvalues vary from-115‰to-77‰,with a mean of-91‰.These data suggest that the ore-forming fluids came from primary magmatic water gradually mixing with more meteoric water in the late stage of the magmatic evolution.Based on the He–Ar–H–O and other existing data,we propose that the oreforming metals are mainly derived from the upper continental crust with a minor contribution from the mantle,and the fluid exsolution and addition of meteoric water during the formation of pegmatite contributed to the formation of the Jiajika superlarge lithium deposit. 展开更多
关键词 He–Ar–H–O isotopes Magmatic-hydrothermal fluids Common pegmatites Spodumene pegmatites Jiajika superlarge lithium deposit SICHUAN
在线阅读 下载PDF
The enhanced element enrichment in the supercritical states of granite–pegmatite systems 被引量:13
20
作者 Rainer Thomas Paul Davidson Karen Appel 《Acta Geochimica》 EI CAS CSCD 2019年第3期335-349,共15页
In this paper, we show that supercritical fluids have a greater significance in the generation of pegmatites,and for ore-forming processes related to granites than is usually assumed. We show that the supercritical me... In this paper, we show that supercritical fluids have a greater significance in the generation of pegmatites,and for ore-forming processes related to granites than is usually assumed. We show that the supercritical melt or fluid is a silicate phase in which volatiles; principally H_2O are completely miscible in all proportions at magmatic temperatures and pressures. This phase evolves from felsic melts and changes into hydrothermal fluids, and its unique properties are particularly important in sequestering and concentrating low abundance elements, such as metals. In our past research, we have focused on processes observed at upper crustal levels, however extensive work by us and other researchers have demonstrated that supercritical melt/fluids should be abundant in melting zones at deep-crustal levels too. We propose that these fluids may provide a connecting link between lower and upper crustal magmas,and a highly efficient transport mechanism for usually melt incompatible elements. In this paper, we explore the unique features of this fluid which allow the partitioning of variouselements and compounds, potentially up to extreme levels,and may explain various features both of mineralization and the magmas that produced them. 展开更多
关键词 GRANITES pegmatites Supercritical state Extreme ELEMENT ENRICHMENT
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部