Chitosan(CS)-based nanocomposites have been studied in various fields,requiring a more facile and efficient technique to fabricate nanoparticles with customized structures.In this study,Ag@methacrylamide CS/poly(ethyl...Chitosan(CS)-based nanocomposites have been studied in various fields,requiring a more facile and efficient technique to fabricate nanoparticles with customized structures.In this study,Ag@methacrylamide CS/poly(ethylene glycol)diacrylate(Ag@MP)micropatterns are successfully fabricated by femtosecond laser maskless optical projection lithography(Fs-MOPL)for the first time.The formation mechanism of core-shell nanomaterial is demonstrated by the local surface plasmon resonances and the nucleation and growth theory.Amino and hydroxyl groups greatly affect the number of Ag@MP nanocomposites,which is further verified by replacing MCS with methacrylated bovine serum albumin and hyaluronic acid methacryloyl,respectively.Besides,the performance of the surface-enhanced Raman scattering,cytotoxicity,cell proliferation,and antibacterial was investigated on Ag@MP micropatterns.Therefore,the proposed protocol to prepare hydrogel core-shell micropattern by the home-built Fs-MOPL technique is prospective for potential applications in the biomedical and biotechnological fields,such as biosensors,cell imaging,and antimicrobial.展开更多
通过低温等离子体技术对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸β-羟乙酯(HEMA)共聚物水凝胶生物材料进行表面改性,以骨髓基质干细胞(BMSc)为细胞模型,考察了细胞在等离子体表面改性前后的水凝胶材料的黏附和增值行为.材料的表面性能通...通过低温等离子体技术对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸β-羟乙酯(HEMA)共聚物水凝胶生物材料进行表面改性,以骨髓基质干细胞(BMSc)为细胞模型,考察了细胞在等离子体表面改性前后的水凝胶材料的黏附和增值行为.材料的表面性能通过X射线光电子能谱、接触角和扫描电镜进行表征.研究结果表明,材料表面经氩等离子体处理后,其亲水性得到较大的改善,表面自由能由45.9 m J/m2增加到70.3 m J/m2;体外实验结果证明,BMSc在等离子体处理后材料表面培养24 h后出现明显细胞核,168 h细胞融合成片,通过等离子体处理方法有利于细胞在水凝胶材料表面的黏附和增殖.展开更多
Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate ...Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.展开更多
Droplet-based microfluidic technology can be utilized as a microreactor to prepare novel functional monodisperse microcapsules.In this study,a droplet-based microfluidic chip with surface modification,which allowed th...Droplet-based microfluidic technology can be utilized as a microreactor to prepare novel functional monodisperse microcapsules.In this study,a droplet-based microfluidic chip with surface modification,which allowed the one-step preparation of double emulsion microcapsules.An O/W/O double emulsion using polyethylene(glycol)diacrylate(PEGDA)solution as the intermediate water phase was prepared by regulating the hydrophilicity and hydrophobicity of the chip surface,with PEGDA microcapsules prepared using UV polymerization.And then anti-tumor drug paclitaxel and neurotoxin 6-OHDA were encapsulated in microcapsules for drug and toxicology evaluation,respectively.Compared to controls,drug-loaded mi-crocapsules caused a significant increase in the death rate of PC12 cells.This indicates that the obtained drug-loaded microcapsules could be used in drug evaluation and potentially in drug screening and deliv-ery.展开更多
The design and manufacturing of microchannels are crucial aspects of modern micro/nanomanufacturing processes,offering a versatile platform for manipulating and driving micro/nanoparticles or cells.In this study,we pr...The design and manufacturing of microchannels are crucial aspects of modern micro/nanomanufacturing processes,offering a versatile platform for manipulating and driving micro/nanoparticles or cells.In this study,we propose a method for manufacturing microchannels using optically induced dielectrophoresis technology to induce the polymerization of polyethylene glycol diacrylate solution.To overcome limitations related to the light intensity energy and the size of intact microchannels,we design and manufacture microstructures of various shapes with a height of 4µm.Additionally,we simulate and analyze the movement of and forces acting on polystyrene(PS)microspheres at different spatial positions within the microchannels.Finally,we successfully demonstrate applications involving the transport of PS microspheres in custom-fabricated microchannels.This novel biocompatible microchannel manufacturing method is simple and non-biotoxic.It provides a new approach for simulating physiological environments in vitro and cultivating and manipulating cells.展开更多
Fluorescently encoded microbeads are in demand for multiplexed applications in different fields.Compared to organic dye-based commercially available Luminex's x MAP technology, upconversion nanoparticles(UCNPs) ar...Fluorescently encoded microbeads are in demand for multiplexed applications in different fields.Compared to organic dye-based commercially available Luminex's x MAP technology, upconversion nanoparticles(UCNPs) are better alternatives due to their large antiStokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate(PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swellingbased encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence,we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface.Methods to functionalize the surface of PEGDA microbeads(acrylic acid incorporation, polydopamine coating)reported thus far quench the fluorescence of UCNPs. Here,PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared.Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin(HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein(hCRP) and HSA protein by immobilizing anti-h CRP antibodies on green UCNPs.展开更多
基金the National Natural Science Foundation of China(NSFC,Grant Nos.61975213,61475164,51901234,and 61205194)National Key R&D Program of China(Grant Nos.2017YFB1104300and 2016YFA0200500)+2 种基金International Partnership Program of Chinese Academy of Sciences(GJHZ2021130)Cooperative R&D Projects between Austria,FFG and China,CAS(GJHZ1720)supported by JSPS Bilateral Program Number JPJSBP120217203。
文摘Chitosan(CS)-based nanocomposites have been studied in various fields,requiring a more facile and efficient technique to fabricate nanoparticles with customized structures.In this study,Ag@methacrylamide CS/poly(ethylene glycol)diacrylate(Ag@MP)micropatterns are successfully fabricated by femtosecond laser maskless optical projection lithography(Fs-MOPL)for the first time.The formation mechanism of core-shell nanomaterial is demonstrated by the local surface plasmon resonances and the nucleation and growth theory.Amino and hydroxyl groups greatly affect the number of Ag@MP nanocomposites,which is further verified by replacing MCS with methacrylated bovine serum albumin and hyaluronic acid methacryloyl,respectively.Besides,the performance of the surface-enhanced Raman scattering,cytotoxicity,cell proliferation,and antibacterial was investigated on Ag@MP micropatterns.Therefore,the proposed protocol to prepare hydrogel core-shell micropattern by the home-built Fs-MOPL technique is prospective for potential applications in the biomedical and biotechnological fields,such as biosensors,cell imaging,and antimicrobial.
文摘通过低温等离子体技术对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸β-羟乙酯(HEMA)共聚物水凝胶生物材料进行表面改性,以骨髓基质干细胞(BMSc)为细胞模型,考察了细胞在等离子体表面改性前后的水凝胶材料的黏附和增值行为.材料的表面性能通过X射线光电子能谱、接触角和扫描电镜进行表征.研究结果表明,材料表面经氩等离子体处理后,其亲水性得到较大的改善,表面自由能由45.9 m J/m2增加到70.3 m J/m2;体外实验结果证明,BMSc在等离子体处理后材料表面培养24 h后出现明显细胞核,168 h细胞融合成片,通过等离子体处理方法有利于细胞在水凝胶材料表面的黏附和增殖.
基金Supported by the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20990222) and the Natural Science Foundation of Jiangsu Province (BK2009021, SBK200930313).
文摘Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.
基金supported by the National Natural Science Foun-dation of China(Nos.31800848 and 21775101).
文摘Droplet-based microfluidic technology can be utilized as a microreactor to prepare novel functional monodisperse microcapsules.In this study,a droplet-based microfluidic chip with surface modification,which allowed the one-step preparation of double emulsion microcapsules.An O/W/O double emulsion using polyethylene(glycol)diacrylate(PEGDA)solution as the intermediate water phase was prepared by regulating the hydrophilicity and hydrophobicity of the chip surface,with PEGDA microcapsules prepared using UV polymerization.And then anti-tumor drug paclitaxel and neurotoxin 6-OHDA were encapsulated in microcapsules for drug and toxicology evaluation,respectively.Compared to controls,drug-loaded mi-crocapsules caused a significant increase in the death rate of PC12 cells.This indicates that the obtained drug-loaded microcapsules could be used in drug evaluation and potentially in drug screening and deliv-ery.
基金funded by the National Natural Science Foundation of China(Project No.62273289)The Youth Innovation Science and Technology Support Program of Shandong Province(Project No.2022KJ274)+1 种基金Natural Science Foundation of Shandong Province(Grant No.ZR2024MF007)Graduate Innovation Foundation of Yantai University,GIFYTU.
文摘The design and manufacturing of microchannels are crucial aspects of modern micro/nanomanufacturing processes,offering a versatile platform for manipulating and driving micro/nanoparticles or cells.In this study,we propose a method for manufacturing microchannels using optically induced dielectrophoresis technology to induce the polymerization of polyethylene glycol diacrylate solution.To overcome limitations related to the light intensity energy and the size of intact microchannels,we design and manufacture microstructures of various shapes with a height of 4µm.Additionally,we simulate and analyze the movement of and forces acting on polystyrene(PS)microspheres at different spatial positions within the microchannels.Finally,we successfully demonstrate applications involving the transport of PS microspheres in custom-fabricated microchannels.This novel biocompatible microchannel manufacturing method is simple and non-biotoxic.It provides a new approach for simulating physiological environments in vitro and cultivating and manipulating cells.
基金the funding support from the Singapore Ministry of Education Academic Research Fund (AcRF Tier 3 Grant MOE2016-T3-1-004, R-397-000274-112 AcRF Tier 1 Grant R-397-000-270-114)
文摘Fluorescently encoded microbeads are in demand for multiplexed applications in different fields.Compared to organic dye-based commercially available Luminex's x MAP technology, upconversion nanoparticles(UCNPs) are better alternatives due to their large antiStokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate(PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swellingbased encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence,we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface.Methods to functionalize the surface of PEGDA microbeads(acrylic acid incorporation, polydopamine coating)reported thus far quench the fluorescence of UCNPs. Here,PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared.Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin(HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein(hCRP) and HSA protein by immobilizing anti-h CRP antibodies on green UCNPs.