期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Synthesis and stability evaluation of hierarchical silicoaluminophosphates with different structural frameworks in the methanol to olefins process 被引量:4
1
作者 Seyed Hesam Mousavi Shohreh Fatemi Marian Razavian 《Particuology》 SCIE EI CAS CSCD 2018年第2期43-53,共11页
Silicoaluminophosphates (SAPOs) with different pore structures were synthesized through the implementation of polyethylene glycol (PEG) as a mesopores impregnation agent. Using PEGs with different molecular weigh... Silicoaluminophosphates (SAPOs) with different pore structures were synthesized through the implementation of polyethylene glycol (PEG) as a mesopores impregnation agent. Using PEGs with different molecular weights (MWs) and concentrations in the synthesis precursor, several samples were synthesized and characterized. Applying a PEG capping agent to the precursors led to the formation of tuned mesopores within the microporous matrix of the SAPO. The effects of the PEG molecular weight and PEG/Al molar ratio were investigated to maximize the efficiency of the catalyst in the methanol-to-olefin (MTO) process. Using PEG with a MW of 6000 resulted in the formation of both Zeolite Rho and chabazite structural frameworks (i.e., DNL-6 and SAPO-34). Pure SAPO-34 samples were successfully prepared using PEG with a MW of 4000. Our results showed that the PEG concentrations affect the porosity and acidity of the synthesized materials. Furthermore, the SAPO-34 sample synthesized with PEG (MW of 4000) and a PEG/Al molar ratio of 0.0125 showed a superior catalytic stability in the MTO reaction owing to the tuned bi-modal porosity and tailored acidity pattern. Finally, through reactivation experiments, it was found that the catalyst is stable even after several regeneration cycles. 展开更多
关键词 Hierarchical SAPO-34 peg Mesoporosity DNL-6 zeolite MTO process Catalytic stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部