Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylened...Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)is widely used in FECDs due to its excellent mechanical flexibility,tunable conductivity,and non-toxicity.However,the manufacturing process for patterned PEDOT:PSS electrochromic devices remains intricate,costly,and challenging to personalize.To address this challenge,we have developed a 3D-printable ink with controllable rheological properties through a concentration-tuning strategy,enabling programmable,patterned printing of PEDOT-based conductive polymer electrochromic layers.The 3D-printed FECDs exhibit outstanding electrochromic performance,including a high optical contrast(up to 47.9%at 635 nm),fast response times(t_(c)=1.6 s;t_(b)=0.6 s),high coloration efficiency(352 cm^(2) C^(-1)),and good cycling stability(with only a 9.3%decrease in optical contrast after 100 electrochemical cycles).Finally,we utilize 3D printing technology to construct flexible,patterned PEDOT:PSS electrochromic devices with bespoke butterfly designs.This work establishes the theoretical foundation for the application of 3D printing technology in PEDOT:PSS flexible electrochromic devices.展开更多
Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythio...Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)hydrogels have arose as a promising candi-date for the next-generation bioelectronic interface due to its high-conductivity,versatility,flexibility and biocompatibility.In this review,we highlight the recent advances of PEDOT:PSS hydrogels,including the gelation methods and modification strategies,and summarize their wide applications in different type of sensors and tissue engineering in detail.We expect that this work will provide valuable information regarding the functionalizations and applications of PEDOT:PSS hydrogels.展开更多
基金supported by the Natural Science Foundation of Jiangxi Province(20232ACB204002&20232BAB202044)Jiangxi Provincial Key Laboratory of Flexible Electronics(20212BCD42004&20242BCC32010).
文摘Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)is widely used in FECDs due to its excellent mechanical flexibility,tunable conductivity,and non-toxicity.However,the manufacturing process for patterned PEDOT:PSS electrochromic devices remains intricate,costly,and challenging to personalize.To address this challenge,we have developed a 3D-printable ink with controllable rheological properties through a concentration-tuning strategy,enabling programmable,patterned printing of PEDOT-based conductive polymer electrochromic layers.The 3D-printed FECDs exhibit outstanding electrochromic performance,including a high optical contrast(up to 47.9%at 635 nm),fast response times(t_(c)=1.6 s;t_(b)=0.6 s),high coloration efficiency(352 cm^(2) C^(-1)),and good cycling stability(with only a 9.3%decrease in optical contrast after 100 electrochemical cycles).Finally,we utilize 3D printing technology to construct flexible,patterned PEDOT:PSS electrochromic devices with bespoke butterfly designs.This work establishes the theoretical foundation for the application of 3D printing technology in PEDOT:PSS flexible electrochromic devices.
基金National Natural Science Foundation of China (No. 82272120)Natural Science Foundation of Zhejiang Province, China (Nos. LQ20F010011, LY18H180006)+2 种基金Key Research and Development Program of Zhejiang Province, China (No. 2022C03002)supported by MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University (No. 2022MSF**)the open research fund of Guangdong Provincial Key Laboratory of Advanced Biomaterials.
文摘Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)hydrogels have arose as a promising candi-date for the next-generation bioelectronic interface due to its high-conductivity,versatility,flexibility and biocompatibility.In this review,we highlight the recent advances of PEDOT:PSS hydrogels,including the gelation methods and modification strategies,and summarize their wide applications in different type of sensors and tissue engineering in detail.We expect that this work will provide valuable information regarding the functionalizations and applications of PEDOT:PSS hydrogels.