Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Neve...Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.展开更多
Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylened...Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)is widely used in FECDs due to its excellent mechanical flexibility,tunable conductivity,and non-toxicity.However,the manufacturing process for patterned PEDOT:PSS electrochromic devices remains intricate,costly,and challenging to personalize.To address this challenge,we have developed a 3D-printable ink with controllable rheological properties through a concentration-tuning strategy,enabling programmable,patterned printing of PEDOT-based conductive polymer electrochromic layers.The 3D-printed FECDs exhibit outstanding electrochromic performance,including a high optical contrast(up to 47.9%at 635 nm),fast response times(t_(c)=1.6 s;t_(b)=0.6 s),high coloration efficiency(352 cm^(2) C^(-1)),and good cycling stability(with only a 9.3%decrease in optical contrast after 100 electrochemical cycles).Finally,we utilize 3D printing technology to construct flexible,patterned PEDOT:PSS electrochromic devices with bespoke butterfly designs.This work establishes the theoretical foundation for the application of 3D printing technology in PEDOT:PSS flexible electrochromic devices.展开更多
基金supported by the National Research Foundation of Korea(NRF)through a grant provided by the Korean government(No.NRF-2021R1F1A1063451).
文摘Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.
基金supported by the Natural Science Foundation of Jiangxi Province(20232ACB204002&20232BAB202044)Jiangxi Provincial Key Laboratory of Flexible Electronics(20212BCD42004&20242BCC32010).
文摘Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)is widely used in FECDs due to its excellent mechanical flexibility,tunable conductivity,and non-toxicity.However,the manufacturing process for patterned PEDOT:PSS electrochromic devices remains intricate,costly,and challenging to personalize.To address this challenge,we have developed a 3D-printable ink with controllable rheological properties through a concentration-tuning strategy,enabling programmable,patterned printing of PEDOT-based conductive polymer electrochromic layers.The 3D-printed FECDs exhibit outstanding electrochromic performance,including a high optical contrast(up to 47.9%at 635 nm),fast response times(t_(c)=1.6 s;t_(b)=0.6 s),high coloration efficiency(352 cm^(2) C^(-1)),and good cycling stability(with only a 9.3%decrease in optical contrast after 100 electrochemical cycles).Finally,we utilize 3D printing technology to construct flexible,patterned PEDOT:PSS electrochromic devices with bespoke butterfly designs.This work establishes the theoretical foundation for the application of 3D printing technology in PEDOT:PSS flexible electrochromic devices.