期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Central role of Yes-associated protein and WW-domain-containing transcriptional co-activator with PDZ-binding motif in pancreatic cancer development 被引量:3
1
作者 Enrique Rozengurt Guido Eibl 《World Journal of Gastroenterology》 SCIE CAS 2019年第15期1797-1816,共20页
Pancreatic ductal adenocarcinoma(PDAC) remains a deadly disease with no efficacious treatment options. PDAC incidence is projected to increase, which may be caused at least partially by the obesity epidemic. Significa... Pancreatic ductal adenocarcinoma(PDAC) remains a deadly disease with no efficacious treatment options. PDAC incidence is projected to increase, which may be caused at least partially by the obesity epidemic. Significantly enhanced efforts to prevent or intercept this cancer are clearly warranted. Oncogenic KRAS mutations are recognized initiating events in PDAC development, however, they are not entirely sufficient for the development of fully invasive PDAC.Additional genetic alterations and/or environmental, nutritional, and metabolic signals, as present in obesity, type-2 diabetes mellitus, and inflammation, are required for full PDAC formation. We hypothesize that oncogenic KRAS increases the intensity and duration of the growth-promoting signaling network.Recent exciting studies from different laboratories indicate that the activity of the transcriptional co-activators Yes-associated protein(YAP) and WW-domaincontaining transcriptional co-activator with PDZ-binding motif(TAZ) play a critical role in the promotion and maintenance of PDAC operating as key downstream target of KRAS signaling. While initially thought to be primarily an effector of the tumor-suppressive Hippo pathway, more recent studies revealed that YAP/TAZ subcellular localization and co-transcriptional activity is regulated by multiple upstream signals. Overall, YAP has emerged as a central node of transcriptional convergence in growth-promoting signaling in PDAC cells. Indeed, YAP expression is an independent unfavorable prognostic marker for overall survival of PDAC. In what follows, we will review studies implicating YAP/TAZ in pancreatic cancer development and consider different approaches to target these transcriptional regulators. 展开更多
关键词 Pancreatic cancer Yes-associated protein and WW-domain-containing TRANSCRIPTIONAL CO-ACTIVATOR with pdz-binding motif Oncogenic Kras Obesity Signaling network and LOOPS
暂未订购
Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction
2
作者 Said Hashemolhosseini Lea Gessler 《Neural Regeneration Research》 SCIE CAS 2025年第9期2464-2479,共16页
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways... Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review. 展开更多
关键词 canonical Wnt"Wingless-related integration site"pathway beta-catenin(CTNNB1) Hippo pathway MYOGENESIS MYOTUBE neuromuscular junction satellite cell skeletal muscle fiber transcriptional co-activator with pdz-binding motif(TAZ) T-cell-specific transcription factor/lymphoid enhancer-binding factor(TCF/LEF) TEA domain family member(TEAD) transducin-like enhancer of split(TLE) yes-associated protein 1(YAP1)
暂未订购
Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways:The therapeutic implications 被引量:10
3
作者 Tianai Sun Jen-Tsan Chi 《Genes & Diseases》 SCIE 2021年第3期241-249,共9页
Ferroptosis is a novel form of iron-dependent cell death characterized by lipid per-oxidation.While the importance and disease relevance of ferroptosis is gaining recognition,much remains unknown about various genetic... Ferroptosis is a novel form of iron-dependent cell death characterized by lipid per-oxidation.While the importance and disease relevance of ferroptosis is gaining recognition,much remains unknown about various genetic and non-genetic determinants of ferroptosis.Hippo signaling pathway is an evolutionarily conserved pathway that responds to various envi-ronmental cues and controls organ size,cell proliferation,death,and self-renewal capacity.In cancer biology,Hippo pathway is a potent tumor suppressing mechanism and its dysregulation contributes to apoptosis evasion,cancer development,metastasis,and treatment resistance.Hippo dysregulation leads to aberrant activation of YAP and TAZ,the two major transcription co-activators of TEADs,that induce the expression of genes triggering tumor-promoting pheno-types,including enhanced cell proliferation,self-renewal and apoptosis inhibition.The Hippo pathway is regulated by the cell-cell contact and cellular density/confluence.Recently,fer-roptosis has also been found being regulated by the cellular contact and density.The YAP/TAZ activation under low density,while confers apoptosis resistance,renders cancer cells sensitivity to ferroptosis.These findings establish YAP/TAZ and Hippo pathways as novel deter-minants of ferroptosis.Therefore,inducing ferroptosis may have therapeutic potential for YAP/TAZ-activated chemo-resistant and metastatic tumor cells.Reciprocally,various YAP/TAZ-targeting treatments under clinical development may confer ferroptosis resistance,limiting the therapeutic efficacy. 展开更多
关键词 APOPTOSIS Ferroptosis Hippo pathway Transcriptional coactivator with pdz-binding motif(TAZ) Yes-associated protein 1(YAP1)
原文传递
Specific Regulation of m^(6)A by SRSF7 Promotes the Progression of Glioblastoma 被引量:3
4
作者 Yixian Cun Sanqi An +20 位作者 Haiqing Zheng Jing Lan Wenfang Chen Wanjun Luo Chengguo Yao Xincheng Li Xiang Huang Xiang Sun Zehong Wu Yameng Hu Ziwen Li Shuxia Zhang Geyan Wu Meisongzhu Yang Miaoling Tang Ruyuan Yu Xinyi Liao Guicheng Gao Wei Zhao Jinkai Wang Jun Li 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2023年第4期707-728,共22页
Serine/arginine-rich splicing factor 7(SRSF7),a known splicing factor,has been revealed to play oncogenic roles in multiple cancers.However,the mechanisms underlying its oncogenic roles have not been well addressed.He... Serine/arginine-rich splicing factor 7(SRSF7),a known splicing factor,has been revealed to play oncogenic roles in multiple cancers.However,the mechanisms underlying its oncogenic roles have not been well addressed.Here,based on N6-methyladenosine(m^(6)A)co-methylation network analysis across diverse cell lines,we find that the gene expression of SRSF7 is positively correlated with glioblastoma(GBM)cell-specific m^(6)A methylation.We then indicate that SRSF7 is a novel m^(6)A regulator,which specifically facilitates the m^(6)A methylation near its binding sites on the mRNAs involved in cell proliferation and migration,through recruiting the methyltransferase complex.Moreover,SRSF7 promotes the proliferation and migration of GBM cells largely dependent on the presence of the m^(6)A methyltransferase.The two m^(6)A sites on the mRNA for PDZ-binding kinase(PBK)are regulated by SRSF7 and partially mediate the effects of SRSF7 in GBM cells through recognition by insulin-like growth factor 2 mRNA-binding protein 2(IGF2BP2).Together,our discovery reveals a novel role of SRSF7 in regulating m^(6)A and validates the presence and functional importance of temporal-and spatial-specific regulation of m^(6)A mediated by RNA-binding proteins(RBPs). 展开更多
关键词 m^(6)A Serine/arginine-rich splicing factor 7 Cell-specific regulation GLIOBLASTOMA pdz-binding kinase
原文传递
Hippo-YAP/TAZ signaling in breast cancer:Reciprocal regulation of microRNAs and implications in precision medicine 被引量:3
5
作者 Farzad Sadri Seyede fatemeh Hosseini +1 位作者 Zohreh Rezaei Mohammad Fereidouni 《Genes & Diseases》 SCIE CSCD 2024年第2期760-771,共12页
Breast cancer is a molecularly heterogeneous disease and the most common female malignancy.In recent years,therapy approaches have evolved to accommodate molecular diversity,with a focus on more biologically based the... Breast cancer is a molecularly heterogeneous disease and the most common female malignancy.In recent years,therapy approaches have evolved to accommodate molecular diversity,with a focus on more biologically based therapies to minimize negative consequences.To regulate cell fate in human breast cells,the Hippo signaling pathway has been associated with the alpha subtype of estrogen receptors.This pathway regulates tissue size,regeneration,and healing,as well as the survival of tissue-specific stem cells,proliferation,and apoptosis in a variety of organs,allowing for cell differentiation.Hippo signaling is mediated by the kinases MST1,MST2,LATS1,and LATS2,as well as the adaptor proteins SAV1 and MOB.These kinases phosphorylate the downstream effectors of the Hippo pathway,yes-associated protein(YAP),and transcriptional coactivator with PDZ-binding motif(TAZ),suppressing the expression of their downstream target genes.The Hippo signaling pathway kinase cascade plays a significant role in all cancers.Understanding the principles of this kinase cascade would prevent the occurrence of breast cancer.In recent years,small noncoding RNAs,or microRNAs,have been implicated in the development of several malignancies,including breast cancer.The interconnections between miRNAs and Hippo signaling pathway core proteins in the breast,on the other hand,remain poorly understood.In this review,we focused on highlighting the Hippo signaling system,its key parts,its importance in breast cancer,and its regulation by miRNAs and other related pathways. 展开更多
关键词 Breast cancer Hippo signaling Large tumor suppressor kinase 1 MICRORNAS pdz-binding motif Yes-associated protein
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部