针对金刚石滚轮是一种回转体零件以及其加工制造过程中信息化集成程度低等特点,对金刚石滚轮的特征信息提取、特征加工方案决策、数控程序后置处理等关键技术进行了研究,采用了产品模型数据交换标准STEP AP 242,实现对金刚石滚轮的制造...针对金刚石滚轮是一种回转体零件以及其加工制造过程中信息化集成程度低等特点,对金刚石滚轮的特征信息提取、特征加工方案决策、数控程序后置处理等关键技术进行了研究,采用了产品模型数据交换标准STEP AP 242,实现对金刚石滚轮的制造特征信息提取,使用STEP AP 242和PDM相结合的集成方式,将金刚石滚轮三维模型作为制造加工信息的载体,并选择SolidWorks作为CAD和CAM软件,以及选择Aras Innovator作为PDM平台,使用C#编程语言和数据库技术开发了金刚石滚轮CAD/CAPP/CAM/PDM集成系统,并进行了实例验证。展开更多
This article presented a facile fabrication process for polydimethylsiloxane(PDMS)composite gold nanotris⁃octahedra(Au NTOH)for a flexible SERS sensor with high sensitivity.Specifically,Au NTOH with excellent SERS beh...This article presented a facile fabrication process for polydimethylsiloxane(PDMS)composite gold nanotris⁃octahedra(Au NTOH)for a flexible SERS sensor with high sensitivity.Specifically,Au NTOH with excellent SERS behaviors was synthesized using a seed-mediated growth method and the dimensions of the Au NTOH was easily tuned.In addition,the influence of size on the SERS performance of their monolayers was systematically investigated,and the Au NTOH with the size of 61 nm possessed the best SERS performance.Importantly,a hydrophilic-substrateassisted interfacial self-assembled monolayer transfer technique was proposed to transfer Au NTOH onto PDMS films,resulting in forming flexible and transparent Au NTOH@PDMS substrates.Furthermore,the excellent signal homoge⁃neity of this substrate was demonstrated and the sensitivity was verified by a measurement of crystal violet(CV)as low as 1×10^(-8) mol/L.As a result,this SERS sensor is progressing for applying in the identification of trace contaminants in broad fields.展开更多
Herein,the surface of Moso bamboo was hydrophobically modified by combining O_(2)/N_(2)plasma treatments with polydimethylsiloxane(PDMS)solution treatment as the hydrophobic solution.The effects of plasma treatment pr...Herein,the surface of Moso bamboo was hydrophobically modified by combining O_(2)/N_(2)plasma treatments with polydimethylsiloxane(PDMS)solution treatment as the hydrophobic solution.The effects of plasma treatment process(power and time),PDMS solution concentration,and maceration time on the hydrophobic performance of bamboo specimens were studied,and the optimal treatment conditions for improving the hydrophobicity were determined.Scanning electron microscopy(SEM),fourier transform infrared(FTIR),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS)were used to analyze the surface morphology,chemical structure,and functional groups in the specimens before and after the plasma and PDMS solution treatments under optimal conditions.Response surface analysis was also performed to determine the optimal treatment conditions.Results show that the hydrophobic performance of the Moso bamboo surface is effectively improved and the surface energy is reduced after the coordinated treatment.The optimal conditions for improving the hydrophobic performance of Moso bamboo surface are a treatment power of 800 W,treatment time of 15 s,O_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for O_(2)plasma treatment and a treatment power of 1000 W,treatment time of 15 s,N_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for N_(2)plasma treatment.After treatment,silicone oil particles and plasma etching traces are observed on the bamboo surface.Moreover,Si-O bonds in the PDMS solution are grafted to the bamboo surface via covalent bonds,thereby increasing the contact angle and decreasing the surface energy to achieve the hydrophobic effect.展开更多
文章以新工科背景下工程认证的新要求为依据,以课程建设为契机,重点研究PDMS三维设计管理系统在环境工程专业《工程制图与CAD》教学中的应用。文章着重围绕提升环境工程专业学生的工程设计能力展开,目的是让学生更快掌握国际先进的工程...文章以新工科背景下工程认证的新要求为依据,以课程建设为契机,重点研究PDMS三维设计管理系统在环境工程专业《工程制图与CAD》教学中的应用。文章着重围绕提升环境工程专业学生的工程设计能力展开,目的是让学生更快掌握国际先进的工程设计理念和设计工具。该项目致力于解决环境类《工程制图与CAD》课程重理论轻实践的问题,通过让学生掌握PDMS软件的使用,使学生不但具备二维平面设计能力,更具备国际先进的数字化三维设计能力。Based on the new requirements of engineering certification under the background of new engineering, this paper focuses on the application of PDMS 3D design management system in the teaching of “Engineering Drawing and CAD” for environmental engineering majors. This paper focuses on improving the engineering design ability of students majoring in environmental engineering, with the aim of enabling students to master international advanced engineering design concepts and design tools faster. This project is committed to solving the problem that the environmental course “Engineering Drawing and CAD” focuses on theory rather than practice. By allowing students to master the use of PDMS software, students will not only have the ability of two-dimensional graphic design, but also have the international advanced digital three-dimensional design ability.展开更多
文摘针对金刚石滚轮是一种回转体零件以及其加工制造过程中信息化集成程度低等特点,对金刚石滚轮的特征信息提取、特征加工方案决策、数控程序后置处理等关键技术进行了研究,采用了产品模型数据交换标准STEP AP 242,实现对金刚石滚轮的制造特征信息提取,使用STEP AP 242和PDM相结合的集成方式,将金刚石滚轮三维模型作为制造加工信息的载体,并选择SolidWorks作为CAD和CAM软件,以及选择Aras Innovator作为PDM平台,使用C#编程语言和数据库技术开发了金刚石滚轮CAD/CAPP/CAM/PDM集成系统,并进行了实例验证。
基金The National Natural Science Foundation of China(12274055)the Fundamental Research Funds for the Central Universities(04442024072)the Training Program of Innovation and Entrepreneurship for Undergraduates in Dalian Minzu University(202312026063)。
文摘This article presented a facile fabrication process for polydimethylsiloxane(PDMS)composite gold nanotris⁃octahedra(Au NTOH)for a flexible SERS sensor with high sensitivity.Specifically,Au NTOH with excellent SERS behaviors was synthesized using a seed-mediated growth method and the dimensions of the Au NTOH was easily tuned.In addition,the influence of size on the SERS performance of their monolayers was systematically investigated,and the Au NTOH with the size of 61 nm possessed the best SERS performance.Importantly,a hydrophilic-substrateassisted interfacial self-assembled monolayer transfer technique was proposed to transfer Au NTOH onto PDMS films,resulting in forming flexible and transparent Au NTOH@PDMS substrates.Furthermore,the excellent signal homoge⁃neity of this substrate was demonstrated and the sensitivity was verified by a measurement of crystal violet(CV)as low as 1×10^(-8) mol/L.As a result,this SERS sensor is progressing for applying in the identification of trace contaminants in broad fields.
基金Zhejiang Provincial Cooperative Forestry Science and Technology Project(No.2023SY05)Zhejiang Provincial Science and Technology Project(No.2024F1065-2).
文摘Herein,the surface of Moso bamboo was hydrophobically modified by combining O_(2)/N_(2)plasma treatments with polydimethylsiloxane(PDMS)solution treatment as the hydrophobic solution.The effects of plasma treatment process(power and time),PDMS solution concentration,and maceration time on the hydrophobic performance of bamboo specimens were studied,and the optimal treatment conditions for improving the hydrophobicity were determined.Scanning electron microscopy(SEM),fourier transform infrared(FTIR),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS)were used to analyze the surface morphology,chemical structure,and functional groups in the specimens before and after the plasma and PDMS solution treatments under optimal conditions.Response surface analysis was also performed to determine the optimal treatment conditions.Results show that the hydrophobic performance of the Moso bamboo surface is effectively improved and the surface energy is reduced after the coordinated treatment.The optimal conditions for improving the hydrophobic performance of Moso bamboo surface are a treatment power of 800 W,treatment time of 15 s,O_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for O_(2)plasma treatment and a treatment power of 1000 W,treatment time of 15 s,N_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for N_(2)plasma treatment.After treatment,silicone oil particles and plasma etching traces are observed on the bamboo surface.Moreover,Si-O bonds in the PDMS solution are grafted to the bamboo surface via covalent bonds,thereby increasing the contact angle and decreasing the surface energy to achieve the hydrophobic effect.
文摘文章以新工科背景下工程认证的新要求为依据,以课程建设为契机,重点研究PDMS三维设计管理系统在环境工程专业《工程制图与CAD》教学中的应用。文章着重围绕提升环境工程专业学生的工程设计能力展开,目的是让学生更快掌握国际先进的工程设计理念和设计工具。该项目致力于解决环境类《工程制图与CAD》课程重理论轻实践的问题,通过让学生掌握PDMS软件的使用,使学生不但具备二维平面设计能力,更具备国际先进的数字化三维设计能力。Based on the new requirements of engineering certification under the background of new engineering, this paper focuses on the application of PDMS 3D design management system in the teaching of “Engineering Drawing and CAD” for environmental engineering majors. This paper focuses on improving the engineering design ability of students majoring in environmental engineering, with the aim of enabling students to master international advanced engineering design concepts and design tools faster. This project is committed to solving the problem that the environmental course “Engineering Drawing and CAD” focuses on theory rather than practice. By allowing students to master the use of PDMS software, students will not only have the ability of two-dimensional graphic design, but also have the international advanced digital three-dimensional design ability.