Phosphoinositide-dependent protein kinase-1 (PDK1), the class of serine threonine kinase, is a master regulator of the AGC family of kinases. It is a main component of the PI3K pathway. As it is reported that this pat...Phosphoinositide-dependent protein kinase-1 (PDK1), the class of serine threonine kinase, is a master regulator of the AGC family of kinases. It is a main component of the PI3K pathway. As it is reported that this pathway is most commonly, and this pathway is the most commonly deregulated among many cancers. So designing a selective inhibitor of PDK1 may have the efficacy as an anticancer agent. Herein, we describe our work focused on the structure based on screening of 95% similar analogues of Myricetin deposited in PubChem database as earlier studies have been suggested that myricetin acts as an anti cancer agent. Further molecular docking as well as the in silico ADMET studies are incorporated on these compounds to evaluate the binding and pharmacokinetic properties of these compounds. Due to low oral bioavailability, clinical use of myricetin is limited. Therefore this study is an attempt towards screening of structurally similar better compounds as compare with myricetin which can act as better inhibitor against PDK-1.展开更多
Identifying a potential dietary non-pharmacological treatment to prevent cerebrovascular damage in Alzheimer's disease is crucial for alleviating cognitive decline in older adults and enhancing quality of life.Thi...Identifying a potential dietary non-pharmacological treatment to prevent cerebrovascular damage in Alzheimer's disease is crucial for alleviating cognitive decline in older adults and enhancing quality of life.This study featured the combined supplementation of soy lecithin(SL)and soy isoflavones(SIF),using in vivo animal models,in vitro vascular ring preparation,and cell studies to investigate the potential advantages and mechanisms of SL combined with SIF on cognitive function and cerebrovascular health from multiple perspectives.The results show that Aβcan significantly induce learning and memory impairment in rats,as well as pathological changes in brain blood vessels,exacerbating damage to cerebral vasodilation function and subsequently reducing cerebral blood flow in the brain.The above-mentioned phenomena induced by Aβcan be significantly improved by the combined intervention of SL and SIF.Further research has revealed that the combined intervention of SL and SIF can reverse the downregulation of the PI3K/PIP3/PDK-1/Akt/eNOS signaling pathway and phosphorylated protein expression induced by Aβin rat brain vascular tissues and bEND.3 cells.Silencing PDK-1 expression in bEND.3 cells showed that the upregulation effect of SL and SIF on Akt and eNOS disappeared.Here we find that prophylactically supplementation with SL in conjunction with SIF appears to effectively activate the PI3K/PIP3/PDK-1/Akt/e NOS pathway within cerebral vascular.This activation improves cerebrovascular vasodilation,offering potential protective effects for both cerebral vascular health and cognitive function.展开更多
Recent evidence of research has been proposed that the phosphoinositide 3-kinase(PI3K) pathway is noticeable target for searching novel anticancer agents. The phosphoinositide 3-kinase(PI3K) is accountable for harmoni...Recent evidence of research has been proposed that the phosphoinositide 3-kinase(PI3K) pathway is noticeable target for searching novel anticancer agents. The phosphoinositide 3-kinase(PI3K) is accountable for harmonizing a diverse range of cell functions, such as transcription, proliferation, cell survival, cell growth, degranulation, vesicular trafficking and cell migration, which are mostly involved in carcinogenesis. Particularly, PI3K-mediated signaling molecules and its effects on gene expression contribute to tumorigenesis. PI3Ks generally are grouped into three distinct classes: Ⅰ, Ⅱ and Ⅲ according to their structure and function. The class IA of PI3K includes an alpha, beta or delta p110 catalytic subunit(p110α, p110β, or p110γ), which are associated with the activation of RTKs. Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K, have just been recognized as novel mechanisms of inducing oncogenic PI3K signaling. Therefore, the class IA PI3K is the only one of most evidently implicated in cancer. The PI3K pathway is mostly mutated in more cancer patients compared with normal person, making it an eyecatching molecular target for analyses based on inhibitor molecule. In this article, we highlighted the signaling effects and regulation pathway of PI3K involved in the development and survival of tumor cells. The consequence and intricacy of PI3K pathway made it an essential beneficial target for cancer treatment.展开更多
文摘Phosphoinositide-dependent protein kinase-1 (PDK1), the class of serine threonine kinase, is a master regulator of the AGC family of kinases. It is a main component of the PI3K pathway. As it is reported that this pathway is most commonly, and this pathway is the most commonly deregulated among many cancers. So designing a selective inhibitor of PDK1 may have the efficacy as an anticancer agent. Herein, we describe our work focused on the structure based on screening of 95% similar analogues of Myricetin deposited in PubChem database as earlier studies have been suggested that myricetin acts as an anti cancer agent. Further molecular docking as well as the in silico ADMET studies are incorporated on these compounds to evaluate the binding and pharmacokinetic properties of these compounds. Due to low oral bioavailability, clinical use of myricetin is limited. Therefore this study is an attempt towards screening of structurally similar better compounds as compare with myricetin which can act as better inhibitor against PDK-1.
基金supported by the National Natural Science Foundation of China(82273620,81302427)。
文摘Identifying a potential dietary non-pharmacological treatment to prevent cerebrovascular damage in Alzheimer's disease is crucial for alleviating cognitive decline in older adults and enhancing quality of life.This study featured the combined supplementation of soy lecithin(SL)and soy isoflavones(SIF),using in vivo animal models,in vitro vascular ring preparation,and cell studies to investigate the potential advantages and mechanisms of SL combined with SIF on cognitive function and cerebrovascular health from multiple perspectives.The results show that Aβcan significantly induce learning and memory impairment in rats,as well as pathological changes in brain blood vessels,exacerbating damage to cerebral vasodilation function and subsequently reducing cerebral blood flow in the brain.The above-mentioned phenomena induced by Aβcan be significantly improved by the combined intervention of SL and SIF.Further research has revealed that the combined intervention of SL and SIF can reverse the downregulation of the PI3K/PIP3/PDK-1/Akt/eNOS signaling pathway and phosphorylated protein expression induced by Aβin rat brain vascular tissues and bEND.3 cells.Silencing PDK-1 expression in bEND.3 cells showed that the upregulation effect of SL and SIF on Akt and eNOS disappeared.Here we find that prophylactically supplementation with SL in conjunction with SIF appears to effectively activate the PI3K/PIP3/PDK-1/Akt/e NOS pathway within cerebral vascular.This activation improves cerebrovascular vasodilation,offering potential protective effects for both cerebral vascular health and cognitive function.
文摘Recent evidence of research has been proposed that the phosphoinositide 3-kinase(PI3K) pathway is noticeable target for searching novel anticancer agents. The phosphoinositide 3-kinase(PI3K) is accountable for harmonizing a diverse range of cell functions, such as transcription, proliferation, cell survival, cell growth, degranulation, vesicular trafficking and cell migration, which are mostly involved in carcinogenesis. Particularly, PI3K-mediated signaling molecules and its effects on gene expression contribute to tumorigenesis. PI3Ks generally are grouped into three distinct classes: Ⅰ, Ⅱ and Ⅲ according to their structure and function. The class IA of PI3K includes an alpha, beta or delta p110 catalytic subunit(p110α, p110β, or p110γ), which are associated with the activation of RTKs. Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K, have just been recognized as novel mechanisms of inducing oncogenic PI3K signaling. Therefore, the class IA PI3K is the only one of most evidently implicated in cancer. The PI3K pathway is mostly mutated in more cancer patients compared with normal person, making it an eyecatching molecular target for analyses based on inhibitor molecule. In this article, we highlighted the signaling effects and regulation pathway of PI3K involved in the development and survival of tumor cells. The consequence and intricacy of PI3K pathway made it an essential beneficial target for cancer treatment.