In distributed fusion,when one or more sensors are disturbed by faults,a common problem is that their local estimations are inconsistent with those of other fault-free sensors.Most of the existing fault-tolerant distr...In distributed fusion,when one or more sensors are disturbed by faults,a common problem is that their local estimations are inconsistent with those of other fault-free sensors.Most of the existing fault-tolerant distributed fusion algorithms,such as the Covariance Union(CU)and Faulttolerant Generalized Convex Combination(FGCC),are only used for the point estimation case where local estimates and their associated error covariances are provided.A treatment with focus on the fault-tolerant distributed fusions of arbitrary local Probability Density Functions(PDFs)is lacking.For this problem,we first propose Kullback–Leibler Divergence(KLD)and reversed KLD induced functional Fuzzy c-Means(FCM)clustering algorithms to soft cluster all local PDFs,respectively.On this basis,two fault-tolerant distributed fusion algorithms of arbitrary local PDFs are then developed.They select the representing PDF of the cluster with the largest sum of memberships as the fused PDF.Numerical examples verify the better fault tolerance of the developed two distributed fusion algorithms.展开更多
概述了方正书版大样转PDF文件方法的优缺点。根据科技期刊开放存取以及复制、检索的需要,提出一种用ps22pdf、Foxit PDF Editor等软件实现方正大样转双层PDF文件的新方法,所生成的PDF文件具有精确重现原文、能复制原文本和全文检索等功...概述了方正书版大样转PDF文件方法的优缺点。根据科技期刊开放存取以及复制、检索的需要,提出一种用ps22pdf、Foxit PDF Editor等软件实现方正大样转双层PDF文件的新方法,所生成的PDF文件具有精确重现原文、能复制原文本和全文检索等功能,为科技期刊的开放存取提供了一种新的实现手段。展开更多
Malware is an ever-present and dynamic threat to networks and computer systems in cybersecurity,and because of its complexity and evasiveness,it is challenging to identify using traditional signature-based detection a...Malware is an ever-present and dynamic threat to networks and computer systems in cybersecurity,and because of its complexity and evasiveness,it is challenging to identify using traditional signature-based detection approaches.The study article discusses the growing danger to cybersecurity that malware hidden in PDF files poses,highlighting the shortcomings of conventional detection techniques and the difficulties presented by adversarial methodologies.The article presents a new method that improves PDF virus detection by using document analysis and a Logistic Model Tree.Using a dataset from the Canadian Institute for Cybersecurity,a comparative analysis is carried out with well-known machine learning models,such as Credal Decision Tree,Naïve Bayes,Average One Dependency Estimator,Locally Weighted Learning,and Stochastic Gradient Descent.Beyond traditional structural and JavaScript-centric PDF analysis,the research makes a substantial contribution to the area by boosting precision and resilience in malware detection.The use of Logistic Model Tree,a thorough feature selection approach,and increased focus on PDF file attributes all contribute to the efficiency of PDF virus detection.The paper emphasizes Logistic Model Tree’s critical role in tackling increasing cybersecurity threats and proposes a viable answer to practical issues in the sector.The results reveal that the Logistic Model Tree is superior,with improved accuracy of 97.46%when compared to benchmark models,demonstrating its usefulness in addressing the ever-changing threat landscape.展开更多
为了有效评价测量响应中不确定性对结构参量识别结果的影响,提出一种基于λ概率密度函数(Probability distribution function,PDF)和一次二阶矩的不确定性计算反求方法。采用二次衍生λ-PDF对待识不确定性参量的PDF进行建模。内层通过...为了有效评价测量响应中不确定性对结构参量识别结果的影响,提出一种基于λ概率密度函数(Probability distribution function,PDF)和一次二阶矩的不确定性计算反求方法。采用二次衍生λ-PDF对待识不确定性参量的PDF进行建模。内层通过对参量呈λ-PDF的功能函数采用一次二阶矩法进行正问题求解,得到计算响应的概率分布;外层通过最小化测量响应与计算响应之间的概率分布特征量将不确定性反问题转化为确定性的最优化问题,并用隔代映射遗传算法识别未知参量λ-PDF的参数。本方法不仅有效地实现了结构未知参量PDF的估计,而且与传统基于抽样的统计方法相比,计算效率较高。数值算例和工程应用验证了本方法的可行性和有效性。展开更多
基金supported in part by the Open Fund of Intelligent Control Laboratory,China(No.ICL-2023–0202)in part by National Key R&D Program of China(Nos.2021YFC2202600,2021YFC2202603)。
文摘In distributed fusion,when one or more sensors are disturbed by faults,a common problem is that their local estimations are inconsistent with those of other fault-free sensors.Most of the existing fault-tolerant distributed fusion algorithms,such as the Covariance Union(CU)and Faulttolerant Generalized Convex Combination(FGCC),are only used for the point estimation case where local estimates and their associated error covariances are provided.A treatment with focus on the fault-tolerant distributed fusions of arbitrary local Probability Density Functions(PDFs)is lacking.For this problem,we first propose Kullback–Leibler Divergence(KLD)and reversed KLD induced functional Fuzzy c-Means(FCM)clustering algorithms to soft cluster all local PDFs,respectively.On this basis,two fault-tolerant distributed fusion algorithms of arbitrary local PDFs are then developed.They select the representing PDF of the cluster with the largest sum of memberships as the fused PDF.Numerical examples verify the better fault tolerance of the developed two distributed fusion algorithms.
文摘概述了方正书版大样转PDF文件方法的优缺点。根据科技期刊开放存取以及复制、检索的需要,提出一种用ps22pdf、Foxit PDF Editor等软件实现方正大样转双层PDF文件的新方法,所生成的PDF文件具有精确重现原文、能复制原文本和全文检索等功能,为科技期刊的开放存取提供了一种新的实现手段。
基金This research work was funded by Institutional Fund Projects under Grant No.(IFPIP:211-611-1443).
文摘Malware is an ever-present and dynamic threat to networks and computer systems in cybersecurity,and because of its complexity and evasiveness,it is challenging to identify using traditional signature-based detection approaches.The study article discusses the growing danger to cybersecurity that malware hidden in PDF files poses,highlighting the shortcomings of conventional detection techniques and the difficulties presented by adversarial methodologies.The article presents a new method that improves PDF virus detection by using document analysis and a Logistic Model Tree.Using a dataset from the Canadian Institute for Cybersecurity,a comparative analysis is carried out with well-known machine learning models,such as Credal Decision Tree,Naïve Bayes,Average One Dependency Estimator,Locally Weighted Learning,and Stochastic Gradient Descent.Beyond traditional structural and JavaScript-centric PDF analysis,the research makes a substantial contribution to the area by boosting precision and resilience in malware detection.The use of Logistic Model Tree,a thorough feature selection approach,and increased focus on PDF file attributes all contribute to the efficiency of PDF virus detection.The paper emphasizes Logistic Model Tree’s critical role in tackling increasing cybersecurity threats and proposes a viable answer to practical issues in the sector.The results reveal that the Logistic Model Tree is superior,with improved accuracy of 97.46%when compared to benchmark models,demonstrating its usefulness in addressing the ever-changing threat landscape.
文摘为了有效评价测量响应中不确定性对结构参量识别结果的影响,提出一种基于λ概率密度函数(Probability distribution function,PDF)和一次二阶矩的不确定性计算反求方法。采用二次衍生λ-PDF对待识不确定性参量的PDF进行建模。内层通过对参量呈λ-PDF的功能函数采用一次二阶矩法进行正问题求解,得到计算响应的概率分布;外层通过最小化测量响应与计算响应之间的概率分布特征量将不确定性反问题转化为确定性的最优化问题,并用隔代映射遗传算法识别未知参量λ-PDF的参数。本方法不仅有效地实现了结构未知参量PDF的估计,而且与传统基于抽样的统计方法相比,计算效率较高。数值算例和工程应用验证了本方法的可行性和有效性。