This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design...This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.展开更多
A novel repetitive control strategy for the output waveform of single-phase CVCF inverters is presented. In this scheme, the inverse transfer function of inverter is used as a compensator to obtain stable and satisfy ...A novel repetitive control strategy for the output waveform of single-phase CVCF inverters is presented. In this scheme, the inverse transfer function of inverter is used as a compensator to obtain stable and satisfy harmonic rejection. Besides, PD controller is adopted to improve transient performance. Simulation and experimental results, which are gotten from a DSP-based 400Hz, 5.5KW inverter, indicate that the proposed control scheme can achieve not only low THD during steady-state operation but also fast transient response during load step change.展开更多
In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-u...In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.展开更多
A novel type of control law was adopted to reduce the vertical acceleration of a fast ferry as well as the motion sickness incidence suffered by the passengers onboard by means of a submerged T-foil.Considering the sy...A novel type of control law was adopted to reduce the vertical acceleration of a fast ferry as well as the motion sickness incidence suffered by the passengers onboard by means of a submerged T-foil.Considering the system changing characteristics under high disturbances,a model-free approach was adopted.In addition,an upgraded proportional-derivative(PD)controller with correction terms resulting from a fast-online estimation of the system dynamics was designed.The overall controller,known as intelligent PD(i-PD)controller,was tested,and the obtained results were compared with those of a classic PD controller.The controllers were also tested in a changing environment and at different operating velocities.The results confirmed the effectiveness of the i-PD controller to smooth the motions with low computational cost control schemes.Furthermore,thanks to ability of the i-PD controller to continually update the estimated dynamics of the system,it showed a better reduction in both vertical motions and the seasickness level of the passengers with the needed robustness under external disturbances and system changing parameters.展开更多
In conjunction with a second order uncertain nonlinear system, this paper makes some comparisons between PID control and general-integral-proportional-derivative (GI-PD) control;that is, by Routh’s stability criterio...In conjunction with a second order uncertain nonlinear system, this paper makes some comparisons between PID control and general-integral-proportional-derivative (GI-PD) control;that is, by Routh’s stability criterion, we demonstrate that the system matrix under GI-PD control can be stabilized more easily;by linear system theory and Lyapunov method, we demonstrate that GI-PD control can deal with the uncertain nonlinearity more effectively;by analyzing and comparing the integral control action, we demonstrate that GI-PD control has the better control performance. Design example and simulation results verify the justification of our conclusions again. All these mean that GI-PD control has the stronger robustness and higher control performance than PID control. Consequently, GI-PD control has broader application prospects than PID control.展开更多
This paper presents the formulation of novel implementation method based on parameter varying PD controller for fuzzy servo controllers. This formulation uses the approximation of fuzzy nonlinear function including er...This paper presents the formulation of novel implementation method based on parameter varying PD controller for fuzzy servo controllers. This formulation uses the approximation of fuzzy nonlinear function including error and error derivation in operation point. Obtained fuzzy control law has been employed to control angular position of servo using digital control technique applied to a typical microcontroller like AVR. The performance and robustness of modified fuzzy controller in comparison with PID controller evaluated in no load, applied external disturbance with different magnitude conditions has been studied. The simulation results showed that the proposed fuzzy controller has a considerable advantage in rise time, settling time and overshoot respect to PID controller when the servo system encounters with nonlinear features like saturation and friction.展开更多
This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stabil...This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.展开更多
Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precis...Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precision and fast-response control of permanent magnet synchronous motor(PMSM)under large inertia load,an improved feedforward control strategy based on position impulse compensation and PD iterative algorithm is proposed to improve the response speed of the PMSM servo system and reduce the overshoot oscillation.This paper analyzes the mathematical models of the speed servo system and position servo system of the PMSM,calculates position overshoot impulse of the PMSM servo system,and improves the traditional feedforward control strategy to reversely compensate when the position is about to overshoot.Moreover,in order to further reduce the position overshoot,the PD iterative control algorithm is superimposed without increasing the complexity of the algorithm.The input signal is continuously corrected through multiple runs to achieve a smoother response control.The effectiveness of the proposed feedforward control strategy is verified by simulation and experiment.展开更多
In this paper, we address the problem of bifurcation control for a delayed neuron system. By introducing a new fractional-order Proportional-Derivative(PD) feedback controller, this paper aims to control the stability...In this paper, we address the problem of bifurcation control for a delayed neuron system. By introducing a new fractional-order Proportional-Derivative(PD) feedback controller, this paper aims to control the stability and Hopf bifurcation through adjusting the control gain parameters. The order chosen in PD controller is different with that of the integer-order neuron system. Sufficient conditions for guaranteeing the stability and generating Hopf bifurcation are constructed for the controlled neuron system. Finally,numerical simulation results are illustrated to verify our theoretical derivations and the relationships between the onset of the Hopf bifurcation and the gain parameters are obtained.展开更多
In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on...In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot's trajectory tracking precision significantly.展开更多
文摘This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.
基金This work was supported by the National Natural Science Foundation of China (No. 50007004)
文摘A novel repetitive control strategy for the output waveform of single-phase CVCF inverters is presented. In this scheme, the inverse transfer function of inverter is used as a compensator to obtain stable and satisfy harmonic rejection. Besides, PD controller is adopted to improve transient performance. Simulation and experimental results, which are gotten from a DSP-based 400Hz, 5.5KW inverter, indicate that the proposed control scheme can achieve not only low THD during steady-state operation but also fast transient response during load step change.
文摘In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.
文摘A novel type of control law was adopted to reduce the vertical acceleration of a fast ferry as well as the motion sickness incidence suffered by the passengers onboard by means of a submerged T-foil.Considering the system changing characteristics under high disturbances,a model-free approach was adopted.In addition,an upgraded proportional-derivative(PD)controller with correction terms resulting from a fast-online estimation of the system dynamics was designed.The overall controller,known as intelligent PD(i-PD)controller,was tested,and the obtained results were compared with those of a classic PD controller.The controllers were also tested in a changing environment and at different operating velocities.The results confirmed the effectiveness of the i-PD controller to smooth the motions with low computational cost control schemes.Furthermore,thanks to ability of the i-PD controller to continually update the estimated dynamics of the system,it showed a better reduction in both vertical motions and the seasickness level of the passengers with the needed robustness under external disturbances and system changing parameters.
文摘In conjunction with a second order uncertain nonlinear system, this paper makes some comparisons between PID control and general-integral-proportional-derivative (GI-PD) control;that is, by Routh’s stability criterion, we demonstrate that the system matrix under GI-PD control can be stabilized more easily;by linear system theory and Lyapunov method, we demonstrate that GI-PD control can deal with the uncertain nonlinearity more effectively;by analyzing and comparing the integral control action, we demonstrate that GI-PD control has the better control performance. Design example and simulation results verify the justification of our conclusions again. All these mean that GI-PD control has the stronger robustness and higher control performance than PID control. Consequently, GI-PD control has broader application prospects than PID control.
文摘This paper presents the formulation of novel implementation method based on parameter varying PD controller for fuzzy servo controllers. This formulation uses the approximation of fuzzy nonlinear function including error and error derivation in operation point. Obtained fuzzy control law has been employed to control angular position of servo using digital control technique applied to a typical microcontroller like AVR. The performance and robustness of modified fuzzy controller in comparison with PID controller evaluated in no load, applied external disturbance with different magnitude conditions has been studied. The simulation results showed that the proposed fuzzy controller has a considerable advantage in rise time, settling time and overshoot respect to PID controller when the servo system encounters with nonlinear features like saturation and friction.
文摘This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.
基金supported in part by the National Natural Science Foundation of China under Project No.52207043。
文摘Under the condition of large inertia load,the stability of the servo system is more sensitive to the response speed and more likely to produce overshoot oscillations.In order to realize the requirements of high-precision and fast-response control of permanent magnet synchronous motor(PMSM)under large inertia load,an improved feedforward control strategy based on position impulse compensation and PD iterative algorithm is proposed to improve the response speed of the PMSM servo system and reduce the overshoot oscillation.This paper analyzes the mathematical models of the speed servo system and position servo system of the PMSM,calculates position overshoot impulse of the PMSM servo system,and improves the traditional feedforward control strategy to reversely compensate when the position is about to overshoot.Moreover,in order to further reduce the position overshoot,the PD iterative control algorithm is superimposed without increasing the complexity of the algorithm.The input signal is continuously corrected through multiple runs to achieve a smoother response control.The effectiveness of the proposed feedforward control strategy is verified by simulation and experiment.
基金supported by the National Natural Science Foundation of China(Grant Nos. 61573194, 51775284)the Natural Science Foundation of Jiangsu Province of China(Grant Nos. BK20181389, BK20171441)+1 种基金the Key Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province(Grant No. 2018SJZDI142)the Australian Research Council(Grant No. DP120104986)
文摘In this paper, we address the problem of bifurcation control for a delayed neuron system. By introducing a new fractional-order Proportional-Derivative(PD) feedback controller, this paper aims to control the stability and Hopf bifurcation through adjusting the control gain parameters. The order chosen in PD controller is different with that of the integer-order neuron system. Sufficient conditions for guaranteeing the stability and generating Hopf bifurcation are constructed for the controlled neuron system. Finally,numerical simulation results are illustrated to verify our theoretical derivations and the relationships between the onset of the Hopf bifurcation and the gain parameters are obtained.
基金Project(2015AA043003)supported by National High-technology Research and Development Program of ChinaProject(GY2016ZB0068)supported by Application Technology Research and Development Program of Heilongjiang Province,ChinaProject(SKLR201301A03)supported by Self-planned Task of State Key Laboratory of Robotics and System(Harbin Institute of Technology),China
文摘In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot's trajectory tracking precision significantly.