The rise of new viruses, like SARS-CoV-2 causing the COVID-19 outbreak, along with the return of antibiotic resistance in harmful bacteria, demands a swift and efficient reaction to safeguard the health and welfare of...The rise of new viruses, like SARS-CoV-2 causing the COVID-19 outbreak, along with the return of antibiotic resistance in harmful bacteria, demands a swift and efficient reaction to safeguard the health and welfare of the global population. It is crucial to have effective measures for prevention, intervention, and monitoring in place to address these evolving and recurring risks, ensuring public health and international security. In countries with limited resources, utilizing recombinant mutation plasmid technology in conjunction with PCR-HRM could help differentiate the existence of novel variants. cDNA synthesis was carried out on 8 nasopharyngeal samples following viral RNA extraction. The P1 segment of the SARS-CoV-2 Spike S protein was amplified via conventional PCR. Subsequently, PCR products were ligated with the pGEM-T Easy vector to generate eight recombinant SARS-CoV-2 plasmids. Clones containing mutations were sequenced using Sanger sequencing and analyzed through PCR-HRM. The P1 segment of the S gene from SARS-CoV-2 was successfully amplified, resulting in 8 recombinant plasmids generated from the 231 bp fragment. PCR-HRM analysis of these recombinant plasmids differentiated three variations within the SARS-CoV-2 plasmid population, each displaying distinct melting temperatures. Sanger sequencing identified mutations A112C, G113T, A114G, G214T, and G216C on the P1 segment, validating the PCR-HRM findings of the variations. These mutations led to the detection of L452R or L452M and F486V protein mutations within the protein sequence of the Omicron variant of SARS-CoV-2. In summary, PCR-HRM is a vital and affordable tool for distinguishing SARS-CoV-2 variants utilizing recombinant plasmids as controls.展开更多
饱和荧光染料、未标记探针与实时荧光PCR结合产生的高分辨率熔解曲线(HRM)是一种新的实时定量技术,在检测速度、灵敏度和准确性上具有突出的优点,近几年来在突变扫描、DNA甲基化和基因分型等医学检测中发展迅速。就HRM的原理、应用以及...饱和荧光染料、未标记探针与实时荧光PCR结合产生的高分辨率熔解曲线(HRM)是一种新的实时定量技术,在检测速度、灵敏度和准确性上具有突出的优点,近几年来在突变扫描、DNA甲基化和基因分型等医学检测中发展迅速。就HRM的原理、应用以及在HRM基础上发展起来的未标记探针(un lab led probe)HMR、弹回探针(snap probe)HMR技术作一介绍。展开更多
文摘The rise of new viruses, like SARS-CoV-2 causing the COVID-19 outbreak, along with the return of antibiotic resistance in harmful bacteria, demands a swift and efficient reaction to safeguard the health and welfare of the global population. It is crucial to have effective measures for prevention, intervention, and monitoring in place to address these evolving and recurring risks, ensuring public health and international security. In countries with limited resources, utilizing recombinant mutation plasmid technology in conjunction with PCR-HRM could help differentiate the existence of novel variants. cDNA synthesis was carried out on 8 nasopharyngeal samples following viral RNA extraction. The P1 segment of the SARS-CoV-2 Spike S protein was amplified via conventional PCR. Subsequently, PCR products were ligated with the pGEM-T Easy vector to generate eight recombinant SARS-CoV-2 plasmids. Clones containing mutations were sequenced using Sanger sequencing and analyzed through PCR-HRM. The P1 segment of the S gene from SARS-CoV-2 was successfully amplified, resulting in 8 recombinant plasmids generated from the 231 bp fragment. PCR-HRM analysis of these recombinant plasmids differentiated three variations within the SARS-CoV-2 plasmid population, each displaying distinct melting temperatures. Sanger sequencing identified mutations A112C, G113T, A114G, G214T, and G216C on the P1 segment, validating the PCR-HRM findings of the variations. These mutations led to the detection of L452R or L452M and F486V protein mutations within the protein sequence of the Omicron variant of SARS-CoV-2. In summary, PCR-HRM is a vital and affordable tool for distinguishing SARS-CoV-2 variants utilizing recombinant plasmids as controls.
文摘饱和荧光染料、未标记探针与实时荧光PCR结合产生的高分辨率熔解曲线(HRM)是一种新的实时定量技术,在检测速度、灵敏度和准确性上具有突出的优点,近几年来在突变扫描、DNA甲基化和基因分型等医学检测中发展迅速。就HRM的原理、应用以及在HRM基础上发展起来的未标记探针(un lab led probe)HMR、弹回探针(snap probe)HMR技术作一介绍。
文摘目的:评价高分辨率熔体聚合酶链反应(high-resolution melt polymerase chain reaction,HRM-PCR)检测HER2基因扩增的有效性及其与荧光原位杂交(fluorescence in situ hybridization,FISH)和免疫组织化学(immunohistochemistry,IHC)检测法的一致性。方法:采用HRM-PCR法检测HER2阴性及阳性细胞株,评估检测方法的有效性;检测98例已行FISH和/或IHC的临床样本,并与FISH和IHC结果进行比较。结果:HRM-PCR检测可以有效区分HER2阴性及阳性细胞株(P<0.05),具有较好的可重复性;检测98例临床样本显示,阴性和阳性样本检测结果差异有统计学意义(0.18±0.14 vs 1.42±0.88,P<0.01),与IHC的一致性为80.33%(kappa=0.6,P<0.01),与FISH的一致性为87.88%(kappa=0.7,P<0.01),结论:HRM-PCR是一种可靠有效的检测HER2基因扩增的方法,与FISH和IHC均有较好的一致性。