期刊文献+
共找到7,548篇文章
< 1 2 250 >
每页显示 20 50 100
基于CS-BP-PID算法的烟叶密集烤房温度控制系统
1
作者 沈少君 闫九福 +4 位作者 卢雨 林晓路 杜超凡 朱荣光 孟令峰 《农机化研究》 北大核心 2026年第4期95-102,共8页
烟叶烘烤作为决定烟叶品质的核心环节,其温湿度控制的精准性至关重要。针对当前密集烤房多阶段温度控制精度差、波动范围大、响应时间长等直接影响烟叶色泽、香气、化学成分、经济价值等问题,设计了一种基于布谷鸟算法(CS)优化的BP神经... 烟叶烘烤作为决定烟叶品质的核心环节,其温湿度控制的精准性至关重要。针对当前密集烤房多阶段温度控制精度差、波动范围大、响应时间长等直接影响烟叶色泽、香气、化学成分、经济价值等问题,设计了一种基于布谷鸟算法(CS)优化的BP神经网络PID控制器。通过模拟布谷鸟的寄生行为和莱维飞行特性,对BP神经网络的初始权重进行优化,加快了BP神经网络的自学习速度,以实现密集烤房温度的快速精准调控,降低了超调量,提高了响应速度。同时,基于树莓派4B搭建了密集烤房温湿度控制试验平台,并对控制器性能进行了验证。结果表明:CS-BP-PID控制器上升时间为79.35 s,峰值时间为180.00 s,调节时间为249.38 s,最大超调量为3.25%,相比常规PID控制器缩短了38.18%,调节时间缩短了47.05%,峰值时间和最大超调量减少了50%以上,满足系统温度控制需求。通过多阶段烟叶烘烤试验,上等烟比例提高了14.45%,经济效益得到了显著提升。该控制器综合性能优良,达到了精准控温控湿的效果。 展开更多
关键词 烟叶密集烤房 温度控制系统 CS-bp-PID算法
在线阅读 下载PDF
基于GA-BP神经网络的碳纤维复合芯导线压接缺陷识别方法
2
作者 杜志叶 黄子韧 +2 位作者 俸波 岳国华 廖永力 《电工技术学报》 北大核心 2026年第1期315-328,共14页
碳纤维复合芯导线因其低碳节能等特性,在输电线路的增容改造中有着良好的应用前景。但碳纤维芯棒十分脆弱,技术工艺不成熟,由于压接不良导致的断线事故时有发生,制约了该技术的推广应用。为此,该文针对断裂和少压两种严重压接缺陷,提出... 碳纤维复合芯导线因其低碳节能等特性,在输电线路的增容改造中有着良好的应用前景。但碳纤维芯棒十分脆弱,技术工艺不成熟,由于压接不良导致的断线事故时有发生,制约了该技术的推广应用。为此,该文针对断裂和少压两种严重压接缺陷,提出一种碳纤维复合芯导线压接缺陷的漏磁检测信号缺陷特征提取方法。通过实验优化,以漏磁检测信号数据中7个峰值点的幅值、21个相对位置信息和7个波形类型信息作为缺陷判断特征值,有效地提高了缺陷种类和缺陷程度识别的准确度。对碳纤维芯导线进行磁性制备,并研制相对应的漏磁检测装置,生产106根不同类型、不同程度的碳纤维芯压接缺陷样品,得到613组漏磁检测信号数据并完成特征值提取,搭建基于遗传算法(GA)的反向传播(BP)神经网络。实测数据表明,该方法可以有效地完成对碳纤维复合芯导线压接缺陷类型的识别,同时对缺陷程度的识别准确率可达到94.31%。 展开更多
关键词 碳纤维复合芯导线 缺陷识别 磁性制备 漏磁检测 遗传算法 bp神经网络
在线阅读 下载PDF
基于随机森林算法的BP神经网络模型在坝基渗压水位预测中的应用
3
作者 王卓群 王建新 +2 位作者 王惠民 盛金昌 冯俊 《人民黄河》 北大核心 2026年第1期150-154,共5页
为提高水电站坝基渗压水位预测精度,提出一种基于随机森林的BP神经网络模型(RF-BP模型)。以白鹤滩水电站为例,基于2021年8月1日至2023年2月23日坝基18个渗流测点数据进行分析。选取GA(遗传算法)-BP、PSO(粒子群算法)-BP、RF、LSTM(长短... 为提高水电站坝基渗压水位预测精度,提出一种基于随机森林的BP神经网络模型(RF-BP模型)。以白鹤滩水电站为例,基于2021年8月1日至2023年2月23日坝基18个渗流测点数据进行分析。选取GA(遗传算法)-BP、PSO(粒子群算法)-BP、RF、LSTM(长短期记忆网络)-BP模型,与RF-BP模型的预测精度进行对比。考虑到渗压水位与库水位存在一定的相关性,对两者的皮尔逊相关系数进行计算。结果表明:在OH-WML1-1、OH-WML1-2和OH-WML5-3典型测点,RF-BP模型的MAE、RMSE、MAPE最小,预测精度最高,这突出了随机森林算法在优化因子选择方面的显著效果。测点渗压水位与库水位相关性越强,RF-BP模型的预测精度越高,说明了渗压水位与库水位之间的相关性对预测准确性有重要影响。 展开更多
关键词 渗压水位 随机森林算法 bp神经网络 精度 白鹤滩水电站
在线阅读 下载PDF
面向Ni-SiC纳米镀层耐磨性能预测的GA-BP神经网络模型
4
作者 覃树宏 梁锦 《电镀与精饰》 北大核心 2026年第1期116-122,130,共8页
Ni-SiC纳米镀层的耐磨性能与其制备工艺参数之间存在复杂的非线性关系,需要具有很强的非线性拟合能力,才能捕捉输入参数与耐磨性能之间的复杂关系,在进行模型求解时可避免陷入局部最优而降低预测精度。为此,提出遗传算法-反向传播(Genet... Ni-SiC纳米镀层的耐磨性能与其制备工艺参数之间存在复杂的非线性关系,需要具有很强的非线性拟合能力,才能捕捉输入参数与耐磨性能之间的复杂关系,在进行模型求解时可避免陷入局部最优而降低预测精度。为此,提出遗传算法-反向传播(Genetic Algorithm-Backpropagation,GA-BP)神经网络模型,对Ni-SiC纳米镀层的耐磨性能预测方法展开研究。选用50 mm×50 mm×5 mm 304不锈钢板材作为基体材料进行预处理,使用电镀液配方对镀液进行配置;采用恒电流脉冲电镀模式完成复合电镀,并利用多功能摩擦磨损试验机进行耐磨性能试验;构建基于BP神经网络的Ni-SiC纳米镀层耐磨性能预测模型,并引入遗传算法对BP神经网络模型的阈值和权值展开寻优,将磨损量作为模型输出,实现Ni-SiC纳米镀层的耐磨性能预测。试验表明,利用本文方法获取的磨损量预测值与磨损量真实值之间的误差最大仅为0.2 mg,预测后的R^(2)为0.988,预测结果的拟合优度较高,应用效果较好。 展开更多
关键词 Ni-SiC纳米镀层 耐磨性能预测 GA算法 bp神经网络 摩擦磨损
在线阅读 下载PDF
基于SSA-BP神经网络的库区边坡变形时序预测研究
5
作者 武益民 张成良 张焕雄 《水电能源科学》 北大核心 2026年第1期177-181,共5页
针对库区边坡位移预测中存在的复杂非线性及不确定性难题,构建了一种基于智能优化算法的混合预测模型SSA-BP,旨在克服传统BP网络训练速度慢、易陷入局部最优的局限,从而提升边坡位移预测的精度和鲁棒性。通过麻雀搜索算法SSA对BP神经网... 针对库区边坡位移预测中存在的复杂非线性及不确定性难题,构建了一种基于智能优化算法的混合预测模型SSA-BP,旨在克服传统BP网络训练速度慢、易陷入局部最优的局限,从而提升边坡位移预测的精度和鲁棒性。通过麻雀搜索算法SSA对BP神经网络的初始权值和阈值进行全局优化,增强其收敛效率和适应性,并基于张家湾边坡历时5个月的真实位移监测数据进行训练。为验证模型优势,将SSA-BP模型与基于遗传算法(GA)和粒子群算法(PSO)优化的BP网络进行性能比对。研究表明,模型在24次迭代内快速收敛,显著优于对比模型,其均方根误差(RRMSE)、平均绝对百分比误差(M MAPE)、决定系数(R2)等评价指标均表现最佳。SSA-BP模型为库区边坡位移预测提供了一种可靠且高效的智能方法。 展开更多
关键词 库区边坡 位移变形预测 麻雀搜索算法(SSA) bp网络模型优化
原文传递
基于ICOA-BP神经网络的装备制造企业制造费用预测研究
6
作者 赵紫卿 张承贺 孙家坤 《制造业自动化》 2026年第1期63-73,共11页
制造费用是装备制造企业生产成本中的重要组成部分,制造费用的精准预测对提升企业的生产成本管理能力具有重要意义。为提高预测精度,提出一种改进小龙虾优化算法(ICOA)优化的BP神经网络预测模型。首先,采用优化拉丁超立方抽样初始化种群... 制造费用是装备制造企业生产成本中的重要组成部分,制造费用的精准预测对提升企业的生产成本管理能力具有重要意义。为提高预测精度,提出一种改进小龙虾优化算法(ICOA)优化的BP神经网络预测模型。首先,采用优化拉丁超立方抽样初始化种群,提高初始种群分布均匀性;引入海洋捕食者算法第一阶段搜索策略和温度自适应因子改进避暑阶段,增强全局搜索能力;结合Lévy飞行策略优化觅食阶段,平衡全局探索与局部开发;利用t分布扰动更新最优个体,避免算法陷入局部最优。之后,利用改进后的小龙虾算法对BP神经网络的初始阈值、权值进行优化,以提升模型的预测精度。最后,通过山东某化工装备制造企业换热器管束制造费用及相关数据为样本进行验证。结果表明:ICOA-BP神经网络预测模型的平均绝对误差(MAE)、均方根误差(RMSE)分别降低了至少20.95%和20.45%,决定系数(R2)提升了至少14.01%,证明了构建模型在制造费用预测精度上的优势。 展开更多
关键词 装备制造企业 制造费用预测 bp神经网络 改进小龙虾优化算法 换热器管束
在线阅读 下载PDF
基于改进PSO-BO-BP的拖拉机双燃料发动机性能预测
7
作者 陈晖 王冰心 +1 位作者 黄镇财 计端 《农机化研究》 北大核心 2026年第1期268-276,共9页
为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机... 为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机制,构建多尺度优化模型。结果表明:BO解析了神经网络隐含层维度与学习率的非线性耦合效应,确定隐含层神经元数量24、学习率0.00215为最优参数组合,表明模型复杂度与学习率调控对泛化性能的协同约束作用;性能预测中,IMPSO-BO-BP对制动热效率(BTE)和制动燃料消耗率(BSFC)的预测平均绝对百分比误差(MAPE)与均方根误差(RMSE)较BO-BP模型降低25%~40%,R^(2)提升至0.995及以上,验证了其对物理主导型非线性关系的高精度建模能力;排放预测方面,模型对CO、NO_(x)和HC的MAPE为3.403%、5.223%、3.413%,R^(2)达0.9925、0.9942、0.9946,RMSE为56.429、45.709、335.322,虽精度略低于性能参数预测,但较BO-BP模型仍提升显著。研究证实多算法协同机制通过全局优化与局部收敛的互补效应,可显著提升模型精度和鲁棒性,为拖拉机双燃料发动机多目标优化控制和低排放设计提供了可靠的建模工具。 展开更多
关键词 双燃料发动机 性能预测 bp神经网络 改进粒子群优化算法
在线阅读 下载PDF
基于BP神经网络的煤矿高压供电系统电容电流预测研究
8
作者 栾斌 范秀伟 《陕西煤炭》 2026年第1期94-101,共8页
【目的】在煤矿生产规模不断扩大和电网建设日趋智能化的背景下,针对煤矿高压供电系统电容电流预测精度低和计算误差大的问题,提出了一种煤矿高压供电系统电容电流智能预测方法。【方法】根据部分现有电缆参数,采用BP神经网络建立电容... 【目的】在煤矿生产规模不断扩大和电网建设日趋智能化的背景下,针对煤矿高压供电系统电容电流预测精度低和计算误差大的问题,提出了一种煤矿高压供电系统电容电流智能预测方法。【方法】根据部分现有电缆参数,采用BP神经网络建立电容电流的预测模型,进而引入粒子群算法对预测模型进行优化,进行了特征参数选取、数据归一化处理并设计了采用文中方法的预测流程。通过平均相对误差等指标来分析误差大小并评价方法的精度,利用实测数据对电容电流预测方法进行对比分析。【结果】结果表明该方法的相对误差为2.52%。【结论】该方法实现了煤矿高压供电系统电容电流的准确预测,为其智能化预测提供了新思路。 展开更多
关键词 煤矿供电系统 电容电流 bp神经网络 PSO算法
在线阅读 下载PDF
Salt and Pepper Noise Filter Based on GA-BP Algorithm Noise Detector 被引量:2
9
作者 宋寅卯 李晓娟 《光电工程》 CAS CSCD 北大核心 2011年第2期59-64,共6页
基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网... 基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网络对图像中的噪声像素定位,然后引入保边函数和PRP算法求目标函数的极值进而实现图像的去噪处理。实验结果表明,该算法比传统滤波算法效果有明显改善,且具有良好的泛化性、鲁棒性和自适应性。 展开更多
关键词 GA-bp算法 椒盐噪声 噪声检测 保边函数 PRP算法
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化 被引量:1
10
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 bp神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于BPNN-EKF-GD-RF算法的锂离子电池组荷电状态估计方法 被引量:1
11
作者 来鑫 翁嘉辉 +4 位作者 杨一鹏 孙宇飞 周龙 郑岳久 韩雪冰 《机械工程学报》 北大核心 2025年第12期251-265,共15页
锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难... 锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难。提出一种将BP神经网络(Back propagation neural network, BPNN)与扩展卡尔曼滤波(Extended Kalman filter, EKF)算法相结合的电池组SOC估计方法。该方法首先基于先验SOC利用BPNN估计不同温度下“领导者”电池的端电压,将其与实测端电压对比后采用EKF算法完成SOC后验估计,同时基于电压差采用梯度下降(Gradient descent, GD)算法更新BPNN的输出层权重使算法更快收敛。在此基础上,设计修正策略利用随机森林(Random forest, RF)算法对“跟随者”电池的SOC进行调整估计。试验结果表明,所提的BPNN-EKF-GD-RF算法能实现电池组在不同温度下SOC的准确估计,常温下SOC估计误差保持在2.5%以内,在温度变化下电池组中单体电池SOC估计最大误差不超过3.2%,为复杂环境下锂离子电池组的SOC估计提供了一种高精度低复杂度方案。 展开更多
关键词 SOC估计 bp神经网络 扩展卡尔曼滤波 梯度下降算法 随机森林 锂离子电池组
原文传递
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
12
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 bp神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
基于BP神经网络的扁平钢箱梁涡振性能预测 被引量:1
13
作者 白桦 杨光 +2 位作者 杨鹏瑞 杨鑫 高广中 《东南大学学报(自然科学版)》 北大核心 2025年第5期1388-1398,共11页
以大跨桥梁常用的扁平钢箱梁为研究对象,通过风洞试验和数值模拟建立了扁平钢箱梁断面在不同动力特性和气动外形下的扭转涡振响应数据库。利用建立的数据库训练了BP神经网络,提出了确定最佳隐含层节点数的方法,并利用交叉验证和遗传算法... 以大跨桥梁常用的扁平钢箱梁为研究对象,通过风洞试验和数值模拟建立了扁平钢箱梁断面在不同动力特性和气动外形下的扭转涡振响应数据库。利用建立的数据库训练了BP神经网络,提出了确定最佳隐含层节点数的方法,并利用交叉验证和遗传算法对BP神经网络的初始权值及阈值进行优化,预测扁平钢箱梁断面的扭转涡振性能。结果表明,利用遗传算法优化后的BP神经网络可以有效预测扁平钢箱梁断面的涡振特性,随机抽取的2个样本预测平均相对误差为8.18%。参数分析表明,扁平钢箱梁断面的腹板角度越小,箱梁断面越趋近于流线型,扭转涡振响应越小。扁平钢箱梁断面增加风嘴后可以减小扭转涡振响应,然而风嘴角度越大,扭转涡振响应越大。 展开更多
关键词 扁平钢箱梁 涡振 bp神经网络 遗传算法 交叉验证
在线阅读 下载PDF
改进SSA优化BP神经网络的变压器故障诊断 被引量:4
14
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 bp神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
在线阅读 下载PDF
BP神经网络回归预测模型的改进 被引量:4
15
作者 何大四 金璐琪 +1 位作者 张祖铭 赵强强 《机械工程与自动化》 2025年第1期224-226,共3页
为了优化BP神经网络,提出了一种优化BP神经网络的流程。首先,判断各影响因素之间的自相关性,如果各影响因素满足自相关评价指标,则可以使用BP神经网络进行回归训练;其次,改变BP神经网络的隐藏节点数、学习效率、训练误差和训练次数等影... 为了优化BP神经网络,提出了一种优化BP神经网络的流程。首先,判断各影响因素之间的自相关性,如果各影响因素满足自相关评价指标,则可以使用BP神经网络进行回归训练;其次,改变BP神经网络的隐藏节点数、学习效率、训练误差和训练次数等影响因素;最后,加入遗传算法或者粒子群算法与BP神经网络组成混合算法,以提高BP神经网络的训练精度。 展开更多
关键词 bp神经网络 隐藏节点 混合算法 回归预测 自相关性
在线阅读 下载PDF
基于SA-BP神经网络的直线电机优化设计 被引量:1
16
作者 郭凯 李昊 +1 位作者 李彪 梁楠楠 《太原学院学报(自然科学版)》 2025年第2期45-52,共8页
针对永磁直线同步电机推力波动大、有限元仿真计算时间长等问题,提出了一种结合解析算法(SA)和BP神经网络算法的电机仿真优化模型:依据电机各部件的磁导率不同划分解析域,由解析算法算出电磁场分布等电机参数,利用解析获得的电机性能参... 针对永磁直线同步电机推力波动大、有限元仿真计算时间长等问题,提出了一种结合解析算法(SA)和BP神经网络算法的电机仿真优化模型:依据电机各部件的磁导率不同划分解析域,由解析算法算出电磁场分布等电机参数,利用解析获得的电机性能参数建立BP神经网络训练样本库,设计BP神经网络算法的训练周期、衰减率等参数后进行模型训练,拟合预测出电机尺寸参数与定位力之间的关系模型,最后利用多目标优化算法优化电机的尺寸参数。实验结果表明:基于SA-BP神经网络的电机模型的推力计算结果与有限元仿真结果的误差为2.35%,SA-BP神经网络算法不仅具有较高的计算精度,还能有效提升电机仿真计算速度。 展开更多
关键词 永磁直线同步电机 解析算法 bp神经网络算法 定位力 多目标优化算法
在线阅读 下载PDF
基于蜣螂优化BP-PID的温室自主跟随平台行走速度控制研究 被引量:2
17
作者 肖茂华 陈泰 +3 位作者 庄晓华 朱烨均 胡艺缤 王鸿翔 《农业机械学报》 北大核心 2025年第2期83-91,154,共10页
针对当前温室作业环境复杂、现有机械行走稳定性差的问题,本文提出了温室自主跟随电动平台行走速度控制方法。由于该系统存在非线性和时变性的特点,传统PID控制算法无法实现有效控制,因此提出了一种基于蜣螂(Dung beetle optimizer,DBO... 针对当前温室作业环境复杂、现有机械行走稳定性差的问题,本文提出了温室自主跟随电动平台行走速度控制方法。由于该系统存在非线性和时变性的特点,传统PID控制算法无法实现有效控制,因此提出了一种基于蜣螂(Dung beetle optimizer,DBO)优化BP神经网络PID控制算法。该算法采用DBO优化算法对BP神经网络的权值进行优化,加快了BP神经网络的自学习速率,实现对温室自主跟随电动平台行走速度的快速精确控制,提高系统的响应速度并降低超调量,最后,将本文提出的行走速度控制算法与PID控制算法、BP-PID控制算法、遗传算法(Genetic algorithm,GA)优化PID控制算法、蚁群算法(Ant colony optimization,ACO)优化PID控制算法对比。试验结果表明,当行走速度为1 m/s时,系统平均响应速度为0.11 s,调整时间为0.27 s,最大超调量为2.44%;当履带线速度大小和方向发生变化时,系统依然表现出响应速度快、超调量小且稳态过程无振荡的优点。DBO-BP-PID控制算法在控制稳定性和控制精度上表现更优,有效降低了系统时滞性和非线性影响,满足温室自主跟随电动平台行走速度控制的需求。 展开更多
关键词 温室 自主跟随电动平台 行走速度控制 蜣螂优化算法 bp-PID控制
在线阅读 下载PDF
基于BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型研究 被引量:1
18
作者 赵锐 田志强 宋宇涵 《世界桥梁》 北大核心 2025年第5期97-104,共8页
为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作... 为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作为安全风险评估体系中的底层指标,构建安全风险评估指标体系;然后,采用BWM法和德尔菲法,利用专家经验确定病害层指标权重,结合模糊综合评判法对桥梁检测样本数据进行前处理;最后,利用BP神经网络对处理后的样本进行训练,根据训练结果,分别用遗传算法(GA)和粒子群算法(PSO)对BP神经网络优化后对比,构建最优评估模型。将该评估模型应用于墩那高速新疆伊犁州某段某中桥,对其进行安全风险评估,以验证其适用性。结果表明:运用BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型在一定程度上克服了检测报告样本中评价不准确和局限问题,同时削弱了BP神经网络训练大量样本的需求;GA优化的BP神经网络模型比PSO优化精度更佳、鲁棒性更好,准确率达96.49%;相比现行规范,运用该模型进行在役中小跨径桥梁安全风险评估,能改善病害叠加评分过低的问题,评估结果更符合实际情况。 展开更多
关键词 中小跨径桥梁 最优最劣法 bp神经网络 遗传算法 粒子群算法 智能评估模型 安全风险评估
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测 被引量:1
19
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 bp神经网络 ERA5再分析资料 粒子群优化算法 风电功率预测
在线阅读 下载PDF
一种基于GA-BP神经网络的冷库能耗预测 被引量:1
20
作者 王雅博 陈君豪 +1 位作者 刘兴华 张行健 《冷藏技术》 2025年第1期79-85,75,共8页
影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建... 影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建基于GA-BP神经网络的冷库能耗模型。结果表明,在缺失货物信息的情况下,使用冷库当天使用面积作为输入变量能够保证模型具有高准确率,R2达到0.9563,并且性能优于BP神经网络、多元回归模型。 展开更多
关键词 能耗预测 特征选择 遗传算法 bp神经网络 机器学习
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部