期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantitative Detection of Micro Hole Wall Roughness in PCBs Based on Improved U-Net Model
1
作者 Lijuan Zheng Yonghao Li +5 位作者 Zhuangzhuang Sun Yangquan Luo Ying Xu Jun Wang Chengyong Wang Xin Wei 《Chinese Journal of Mechanical Engineering》 2025年第3期1-11,共11页
The current method for inspecting microholes in printed circuit boards(PCBs)involves preparing slices followed by optical microscope measurements.However,this approach suffers from low detection efficiency,poor reliab... The current method for inspecting microholes in printed circuit boards(PCBs)involves preparing slices followed by optical microscope measurements.However,this approach suffers from low detection efficiency,poor reliability,and insufficient measurement stability.Micro-CT enables the observation of the internal structures of the sample without the need for slicing,thereby presenting a promising new method for assessing the quality of microholes in PCBs.This study integrates computer vision technology with computed tomography(CT)to propose a method for detecting microhole wall roughness using a U-Net model and image processing algorithms.This study established an unplated copper PCB CT image dataset and trained an improved U-Net model.Validation of the test set demonstrated that the improved model effectively segmented microholes in the PCB CT images.Subsequently,the roughness of the holes’walls was assessed using a customized image-processing algorithm.Comparative analysis between CT detection based on various edge detection algorithms and slice detection revealed that CT detection employing the Canny algorithm closely approximates slice detection,yielding range and average errors of 2.92 and 1.64μm,respectively.Hence,the detection method proposed in this paper offers a novel approach for nondestructive testing of hole wall roughness in the PCB industry. 展开更多
关键词 pcb CT image segmentation Improved U-Net model Hole wall roughness Micro-CT non-destructive testing
在线阅读 下载PDF
Enhancing the Quality of Low-Light Printed Circuit Board Images through Hue, Saturation, and Value Channel Processing and Improved Multi-Scale Retinex
2
作者 Huichao Shang Penglei Li Xiangqian Peng 《Journal of Computer and Communications》 2024年第1期1-10,共10页
To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. First... To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. Firstly, an improved MSRCR method was employed for brightness enhancement of the original image. Next, the color space of the original image was transformed from RGB to HSV, followed by processing the S-channel image using bilateral filtering and contrast stretching algorithms. The V-channel image was subjected to brightness enhancement using adaptive Gamma and CLAHE algorithms. Subsequently, the processed image was transformed back to the RGB color space from HSV. Finally, the images processed by the two algorithms were fused to create a new RGB image, and color restoration was performed on the fused image. Comparative experiments with other methods indicated that the contrast of the image was optimized, texture features were more abundantly preserved, brightness levels were significantly improved, and color distortion was prevented effectively, thus enhancing the quality of low-lit PCB images. 展开更多
关键词 Low-Lit pcb images Spatial Transformation image Enhancement image Fusion HSV
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部