期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种改进的PCAC-YOLO目标算法在无人机参与城市作战目标检测中的应用
被引量:
2
1
作者
彭富伦
裴昊晨
+2 位作者
刘超
李双全
赵妍
《国外电子测量技术》
2025年第1期103-109,共7页
无人机在城市作战的复杂环境中,目标对象不仅种类繁多且密集分布,极易遭遇相互遮挡的情况;此外,由于无人机视角下的目标尺寸显著缩小,因此,检测过程中会出现漏检和误检的问题出现。针对以上问题提出了一种无人机目标检测算法PCAC-YOLO...
无人机在城市作战的复杂环境中,目标对象不仅种类繁多且密集分布,极易遭遇相互遮挡的情况;此外,由于无人机视角下的目标尺寸显著缩小,因此,检测过程中会出现漏检和误检的问题出现。针对以上问题提出了一种无人机目标检测算法PCAC-YOLO。为了增强遮挡目标边缘信息的表征能力,通过裁剪CBS层和添加基于相似度的激活模块(Similarity-Aware Activation Module,SimAM)注意力机制,设计了新的空间池化连接自注意力机制(Spatial Pooling Connect Self-Attention Mechanisms,SPCSM)模块。同时引入卷积特征提取模块Conv2Former,提高了模型对小目标特征的关注能力。实验结果表明,在AU-AIR数据集中,相较于原始的YOLOv7算法,Precision值增加至52.8%,提升了14.1%;mAP@0.5值增加至41.4%,提升了6.1%;mAP@0.5:0.95|small值为16.2%,提升了1.7%。该目标算法有效提升了在城市作战环境无人机视角下的目标检测准确率,证明了设计算法的有效性。
展开更多
关键词
城市作战
目标检测
YOLOv7
pcac-yolo
无人机视角
原文传递
题名
一种改进的PCAC-YOLO目标算法在无人机参与城市作战目标检测中的应用
被引量:
2
1
作者
彭富伦
裴昊晨
刘超
李双全
赵妍
机构
西安应用光学研究所
西安工业大学兵器科学与技术学院
西安军代局
西安工业大学电子信息工程学院
出处
《国外电子测量技术》
2025年第1期103-109,共7页
文摘
无人机在城市作战的复杂环境中,目标对象不仅种类繁多且密集分布,极易遭遇相互遮挡的情况;此外,由于无人机视角下的目标尺寸显著缩小,因此,检测过程中会出现漏检和误检的问题出现。针对以上问题提出了一种无人机目标检测算法PCAC-YOLO。为了增强遮挡目标边缘信息的表征能力,通过裁剪CBS层和添加基于相似度的激活模块(Similarity-Aware Activation Module,SimAM)注意力机制,设计了新的空间池化连接自注意力机制(Spatial Pooling Connect Self-Attention Mechanisms,SPCSM)模块。同时引入卷积特征提取模块Conv2Former,提高了模型对小目标特征的关注能力。实验结果表明,在AU-AIR数据集中,相较于原始的YOLOv7算法,Precision值增加至52.8%,提升了14.1%;mAP@0.5值增加至41.4%,提升了6.1%;mAP@0.5:0.95|small值为16.2%,提升了1.7%。该目标算法有效提升了在城市作战环境无人机视角下的目标检测准确率,证明了设计算法的有效性。
关键词
城市作战
目标检测
YOLOv7
pcac-yolo
无人机视角
Keywords
urban combat
target detection
YOLOv7
PCAC–YOLO
UAV perspective
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
V18 [航空宇航科学与技术—人机与环境工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
一种改进的PCAC-YOLO目标算法在无人机参与城市作战目标检测中的应用
彭富伦
裴昊晨
刘超
李双全
赵妍
《国外电子测量技术》
2025
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部