期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Alleviating limit cycling in training GANs with an optimization technique 被引量:2
1
作者 Keke Li Liping Tang Xinmin Yang 《Science China Mathematics》 SCIE CSCD 2024年第6期1287-1316,共30页
In this paper,we undertake further investigation to alleviate the issue of limit cycling behavior in training generative adversarial networks(GANs)through the proposed predictive centripetal acceleration algorithm(PCA... In this paper,we undertake further investigation to alleviate the issue of limit cycling behavior in training generative adversarial networks(GANs)through the proposed predictive centripetal acceleration algorithm(PCAA).Specifically,we first derive the upper and lower complexity bounds of PCAA for a general bilinear game,with the last-iterate convergence rate notably improving upon previous results.Then,we combine PCAA with the adaptive moment estimation algorithm(Adam)to propose PCAA-Adam,for practical training of GANs to enhance their generalization capability.Finally,we validate the effectiveness of the proposed algorithm through experiments conducted on bilinear games,multivariate Gaussian distributions,and the CelebA dataset,respectively. 展开更多
关键词 GANs general bilinear game predictive centripetal acceleration algorithm lower and upper complexity bounds pcaa-adam
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部