期刊文献+
共找到16,909篇文章
< 1 2 250 >
每页显示 20 50 100
Regional Storm Surge Forecast Method Based on a Neural Network and the Coupled ADCIRC-SWAN Model 被引量:1
1
作者 Yuan SUN Po HU +2 位作者 Shuiqing LI Dongxue MO Yijun HOU 《Advances in Atmospheric Sciences》 2025年第1期129-145,共17页
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ... Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning. 展开更多
关键词 regional storm surge forecast coupled ADCIRC-SWAN model neural network Res-U-Net structure
在线阅读 下载PDF
Global Piecewise Analysis of HIV Model with Bi-Infectious Categories under Ordinary Derivative and Non-Singular Operator with Neural Network Approach
2
作者 Ghaliah Alhamzi Badr Saad TAlkahtani +1 位作者 Ravi Shanker Dubey Mati ur Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期609-633,共25页
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i... This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately. 展开更多
关键词 HIV infection model qualitative scheme approximate solution piecewise global operator neural network
在线阅读 下载PDF
An Intelligent Control Method Based on the Artificial Neural Network Model
3
作者 Liangkai Zhou Dan Han +1 位作者 Qinzhe Wang Nv Yang 《Journal of Electronic Research and Application》 2025年第5期299-303,共5页
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system... The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption. 展开更多
关键词 Artificial neural network model Control method Optimization scheme
在线阅读 下载PDF
Modeling of Flapping Wing Aerial Vehicle Using Hybrid Phase-functioned Neural Network Based on Flight Data
4
作者 Zhihao Zhao Zhiling Jiang +1 位作者 Chenyang Zhang Guanghua Song 《Journal of Bionic Engineering》 2025年第3期1126-1142,共17页
Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping win... Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles. 展开更多
关键词 Flapping wing aerial vehicle Flapping phase modeling neural networks
在线阅读 下载PDF
An artificial neural network-based data-driven constitutive model of shape memory alloys
5
作者 Xingyu Zhou Ziang Liu +1 位作者 Chao Yu Guozheng Kang 《Acta Mechanica Sinica》 2025年第8期108-125,共18页
The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformatio... The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformation behaviors of SMAs,the concepts in classical plasticity are employed in the existing constitutive models,and a series of complex mathematical equations are involved.Such complexity brings inconvenience for the construction,implementation,and application of the constitutive models.To overcome these shortcomings,a data-driven constitutive model of SMAs is developed in this work based on the artificial neural network(ANN).In the proposed model,the components of the strain tensor in principal space,ambient temperature,and the maximum equivalent strain in the deformation history from the initial state to the current loading state are chosen as the input features,and the components of the stress tensor in principal space are set as the output.The proposed ANN-based constitutive model is implemented into the finite element program ABAQUS by deriving its consistent tangent modulus and writing a user-defined material subroutine.The stress-strain responses of SMA material under various loading paths and at different ambient temperatures are used to train the ANN model,which is generated from the existing constitutive model(numerical experiments).To validate the capability of the proposed model,the predicted stress-strain responses of SMA material,and the global and local responses of two typical SMA structures are compared with the corresponding numerical experiments.This work demonstrates a good potential to obtain the constitutive model of SMAs by pure data and avoid the need for vast stores of knowledge for the construction of constitutive models. 展开更多
关键词 Shape memory alloys Constitutive model DATA-DRIVEN Artificial neural network
原文传递
Fixed Neural Network Image Steganography Based on Secure Diffusion Models
6
作者 Yixin Tang Minqing Zhang +2 位作者 Peizheng Lai Ya Yue Fuqiang Di 《Computers, Materials & Continua》 2025年第9期5733-5750,共18页
Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deplo... Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deployment.Diffusion model-based methods face security vulnerabilities,particularly due to potential information leakage during generation.We propose a fixed neural network image steganography framework based on secure diffu-sion models to address these challenges.Unlike conventional approaches,our method minimizes cover modifications through neural network optimization,achieving superior steganographic performance in human visual perception and computer vision analyses.The cover images are generated in an anime style using state-of-the-art diffusion models,ensuring the transmitted images appear more natural.This study introduces fixed neural network technology that allows senders to transmit only minimal critical information alongside stego-images.Recipients can accurately reconstruct secret images using this compact data,significantly reducing transmission overhead compared to conventional deep steganography.Furthermore,our framework innovatively integrates ElGamal,a cryptographic algorithm,to protect critical information during transmission,enhancing overall system security and ensuring end-to-end information protection.This dual optimization of payload reduction and cryptographic reinforcement establishes a new paradigm for secure and efficient image steganography. 展开更多
关键词 Image steganography fixed neural network secure diffusion models ELGAMAL
在线阅读 下载PDF
A survey of backdoor attacks and defenses:From deep neural networks to large language models
7
作者 Ling-Xin Jin Wei Jiang +5 位作者 Xiang-Yu Wen Mei-Yu Lin Jin-Yu Zhan Xing-Zhi Zhou Maregu Assefa Habtie Naoufel Werghi 《Journal of Electronic Science and Technology》 2025年第3期13-35,共23页
Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susce... Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susceptibility to backdoors maliciously injected by adversaries.This vulnerability arises due to the intricate architecture and opacity of DNNs,resulting in numerous redundant neurons embedded within the models.Adversaries exploit these vulnerabilities to conceal malicious backdoor information within DNNs,thereby causing erroneous outputs and posing substantial threats to the efficacy of DNN-based applications.This article presents a comprehensive survey of backdoor attacks against DNNs and the countermeasure methods employed to mitigate them.Initially,we trace the evolution of the concept from traditional backdoor attacks to backdoor attacks against DNNs,highlighting the feasibility and practicality of generating backdoor attacks against DNNs.Subsequently,we provide an overview of notable works encompassing various attack and defense strategies,facilitating a comparative analysis of their approaches.Through these discussions,we offer constructive insights aimed at refining these techniques.Finally,we extend our research perspective to the domain of large language models(LLMs)and synthesize the characteristics and developmental trends of backdoor attacks and defense methods targeting LLMs.Through a systematic review of existing studies on backdoor vulnerabilities in LLMs,we identify critical open challenges in this field and propose actionable directions for future research. 展开更多
关键词 Backdoor Attacks Backdoor defenses Deep neural networks Large language model
在线阅读 下载PDF
Enhancing hydrogel predictive modeling:an augmented neural network approach for swelling dynamics in pH-responsive hydrogels
8
作者 M.A.FARAJI M.ASKARI-SEDEH +1 位作者 A.ZOLFAGHARIAN M.BAGHANI 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1787-1808,共22页
The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional expe... The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional experimental methods struggle to capture stress distributions due to technical limitations,while numerical approaches are often computationally intensive.This study presents a hybrid framework combining analytical modeling and machine learning(ML)to overcome these challenges.An analytical model is used to simulate transient swelling behaviors and stress distributions,and is confirmed to be viable through the comparison of the obtained simulation results with the existing experimental swelling data.The predictions from this model are used to train neural networks,including a two-step augmented architecture.The initial neural network predicts hydration values,which are then fed into a second network to predict stress distributions,effectively capturing nonlinear interdependencies.This approach achieves mean absolute errors(MAEs)as low as 0.031,with average errors of 1.9%for the radial stress and 2.55%for the hoop stress.This framework significantly enhances the predictive accuracy and reduces the computational complexity,offering actionable insights for optimizing hydrogel-based systems. 展开更多
关键词 transient swelling pH-responsive hydrogel neural network data-driven model hydration and stress dynamics
在线阅读 下载PDF
A hybrid data-driven approach for rainfall-induced landslide susceptibility mapping:Physically-based probabilistic model with convolutional neural network
9
作者 Hong-Zhi Cui Bin Tong +2 位作者 Tao Wang Jie Dou Jian Ji 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4933-4951,共19页
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region... Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale. 展开更多
关键词 Rainfall landslides Landslide susceptibility mapping Hybrid model Physically-based model Convolution neural network(CNN) Probability of failure(POF)
在线阅读 下载PDF
Using a Multi-Output Neural Network Model to Standardize Heterogeneous Fisheries Data
10
作者 XU Zhenqi LIU Yang WANG Jintao 《Journal of Ocean University of China》 2025年第5期1373-1385,I0667-I0676,共23页
Biological data in fishery ecology have complex structures and are highly heterogeneous.Catch per unit effort(CPUE)estimated from fishery-dependent data are often used to characterize abundance indices(AI)of fish spec... Biological data in fishery ecology have complex structures and are highly heterogeneous.Catch per unit effort(CPUE)estimated from fishery-dependent data are often used to characterize abundance indices(AI)of fish species,which is critical in fish stock assessment.However,additional considerations need to be undertaken to ensure robust estimation because of the latently complicated structures in fishery-dependent data.Here,we elaborated the process of constructing multi-output artificial neural network models to standardize CPUE for heterogeneous fishing operations and applied it to the skipjack tuna(Katsuwonus pelamis)in the western and central Pacific Ocean(WCPO).Seasonal,spatial,and environmental factors were input variables,and the CPUE of four types of skipjack tuna fisheries were set as output variables.The optimal structure for multi-output neural network was evaluated by systematic comparison in 100 runs hold-out cross-validation.The results showed that the final multi-output neural network model with high accuracy can predict the spatial and temporal trends of skipjack tuna abundance. 展开更多
关键词 western and central Pacific Ocean skipjack tuna BP neural network multi-output model CPUE standardization ENSO
在线阅读 下载PDF
Experimental and Neural Network Modeling of the Thermal Behavior of an Agricultural Greenhouse Integrated with a Phase Change Material(CaCl_(2)⋅6H_(2)O)
11
作者 Abdelouahab Benseddik Djamel Daoud +4 位作者 Ahmed Badji Hocine Bensaha Tarik Hadibi Yunfeng Wang Li Ming 《Energy Engineering》 2025年第12期5021-5037,共17页
In Saharan climates,greenhouses face extreme diurnal temperature fluctuations that generate thermal stress,reduce crop productivity,and hinder sustainable agricultural practices.Passive thermal storage using Phase Cha... In Saharan climates,greenhouses face extreme diurnal temperature fluctuations that generate thermal stress,reduce crop productivity,and hinder sustainable agricultural practices.Passive thermal storage using Phase Change Materials(PCM)is a promising solution to stabilize microclimatic conditions.This study aims to evaluate experimentally and numerically the effectiveness of PCM integration for moderating greenhouse temperature fluctuations under Saharan climatic conditions.Two identical greenhouse prototypes were constructed in Ghardaia,Algeria:a reference greenhouse and a PCM-integrated greenhouse using calcium chloride hexahydrate(CaCl_(2)⋅6H_(2)O).Thermal performance was assessed during a five-day experimental period(7–11May 2025)under severe ambient conditions.To complement this,a Nonlinear Auto-Regressive with eXogenous inputs(NARX)neural network model was developed and trained using a larger dataset(7–25 May 2025)to predict greenhouse thermal dynamics.The PCM greenhouse reduced peak daytime air temperature by an average of 8.14℃and decreased the diurnal temperature amplitude by 53.6%compared to the reference greenhouse.The NARX model achieved high predictive accuracy(R^(2)=0.990,RMSE=0.425℃,MAE=0.223℃,MBE=0.008℃),capturing both sensible and latent heat transfer mechanisms,including PCM melting and solidification.The combined experimental and predictive modeling results confirm the potential of PCM integration as an effective passive thermal regulation strategy for greenhouses in arid regions.This approach enhances microclimatic stability,improves energy efficiency,and supports the sustainability of protected agriculture under extreme climatic conditions. 展开更多
关键词 Agricultural greenhouse phase changematerial(PCM) CaCl_(2)⋅6H_(2)O thermal regulation NARX neural network experimental study modeling
在线阅读 下载PDF
Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network 被引量:11
12
作者 Xin Shao Qing Liu +3 位作者 Zicheng Xin Jiangshan Zhang Tao Zhou Shaoshuai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期106-117,共12页
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ... The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter. 展开更多
关键词 basic oxygen furnace oxygen consumption oxygen blowing time oxygen balance mechanism deep neural network hybrid model
在线阅读 下载PDF
Dynamic modeling and RBF neural network compensation control for space flexible manipulator with an underactuated hand 被引量:3
13
作者 Dongyang SHANG Xiaopeng LI +1 位作者 Meng YIN Fanjie LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期417-439,共23页
In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter pertur... In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH. 展开更多
关键词 Space flexible manipulator RBF neural network Underactuated hand Dynamic models model simplification
原文传递
Model Agnostic Meta-Learning(MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks 被引量:1
14
作者 Yasir Maqsood Syed Muhammad Usman +3 位作者 Musaed Alhussein Khursheed Aurangzeb Shehzad Khalid Muhammad Zubair 《Computers, Materials & Continua》 SCIE EI 2024年第5期2795-2811,共17页
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di... Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed. 展开更多
关键词 Wheat disease detection deep learning vision transformer graph neural network model agnostic meta learning
在线阅读 下载PDF
Predictive modelling of volumetric and Marshall properties of asphalt mixtures modified with waste tire-derived char:A statistical neural network approach 被引量:1
15
作者 Nura Shehu Aliyu Yaro Muslich Hartadi Sutanto +4 位作者 Noor Zainab Habib Aliyu Usman Abiola Adebanjo Surajo Abubakar Wada Ahmad Hussaini Jagaba 《Journal of Road Engineering》 2024年第3期318-333,共16页
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw... The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices. 展开更多
关键词 Waste tire neural network Sustainable practices Asphalt mixtures Predictive model
在线阅读 下载PDF
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group 被引量:1
16
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 Structural Health Monitoring(SHM) BRIDGES big model Convolutional neural network(CNN) Finite Element Method(FEM)
在线阅读 下载PDF
Investigation Study of Structure Real Load Spectra Acquisition and Fatigue Life Prediction Based on the Optimized E cient Hinging Hyperplane Neural Network Model 被引量:1
17
作者 Lin Zhu Benao Xing +2 位作者 Xingbao Li Min Chen Minping Jia 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期628-648,共21页
In the realm of engineering practice,various factors such as limited availability of measurement data and complex working conditions pose significant challenges to obtaining accurate load spectra.Thus,accurately predi... In the realm of engineering practice,various factors such as limited availability of measurement data and complex working conditions pose significant challenges to obtaining accurate load spectra.Thus,accurately predicting the fatigue life of structures becomes notably arduous.This paper proposed an approach to predict the fatigue life of structure based on the optimized load spectra,which is accurately estimated by an efficient hinging hyperplane neural network(EHH-NN)model.The construction of the EHH-NN model includes initial network generation and parameter optimization.Through the combination of working conditions design,multi-body dynamics analysis and structural static mechanics analysis,the simulated load spectra of the structure are obtained.The simulated load spectra are taken as the input variables for the optimized EHH-NN model,while the measurement load spectra are used as the output variables.The prediction results of case structure indicate that the optimized EHH-NN model can achieve the high-accuracy load spectra,in comparison with support vector machine(SVM),random forest(RF)model and back propagation(BP)neural network.The error rate between the prediction values and the measurement values of the optimized EHH-NN model is 4.61%.In the Cauchy-Lorentz distribution,the absolute error data of 92%with EHH-NN model appear in the intermediate range of±1.65%.Also,the fatigue life analysis is performed for the case structure,based on the accurately predicted load spectra.The fatigue life of the case structure is calculated based on the comparison between the measured and predicted load spectra,with an accuracy of 93.56%.This research proposes the optimized EHH-NN model can more accurately reflect the measurement load spectra,enabling precise calculation of fatigue life.Additionally,the optimized EHH-NN model provides reliability assessment for industrial engineering equipment. 展开更多
关键词 Efficient hinging hyperplane neural network model ANOVA decomposition Load spectra optimization Optimal parameter Fatigue life prediction
在线阅读 下载PDF
Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images
18
作者 Anandhavalli Muniasamy Ashwag Alasmari 《Computer Modeling in Engineering & Sciences》 2025年第4期569-592,共24页
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi... The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation. 展开更多
关键词 Bayesian neural networks(BNNs) convolution neural networks(CNN) Bayesian convolution neural networks(BCNNs) predictive modeling precision medicine uncertainty quantification
在线阅读 下载PDF
Predicting outcomes using neural networks in the intensive care unit
19
作者 Gumpeny R Sridhar Venkat Yarabati Lakshmi Gumpeny 《World Journal of Clinical Cases》 2025年第11期1-11,共11页
Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich da... Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich data for prognostication and clinical care.They can handle complex nonlinear relation-ships in medical data and have advantages over traditional predictive methods.A number of models are used:(1)Feedforward networks;and(2)Recurrent NN and convolutional NN to predict key outcomes such as mortality,length of stay in the ICU and the likelihood of complications.Current NN models exist in silos;their integration into clinical workflow requires greater transparency on data that are analyzed.Most models that are accurate enough for use in clinical care operate as‘black-boxes’in which the logic behind their decision making is opaque.Advan-ces have occurred to see through the opacity and peer into the processing of the black-box.In the near future ML is positioned to help in clinical decision making far beyond what is currently possible.Transparency is the first step toward vali-dation which is followed by clinical trust and adoption.In summary,NNs have the transformative ability to enhance predictive accuracy and improve patient management in ICUs.The concept should soon be turning into reality. 展开更多
关键词 Large language models HALLUCINATIONS Supervised learning Unsupervised learning Convoluted neural networks BLACK-BOX WORKFLOW
暂未订购
Optimal Control of Unknown Collective Spin Systems via a Neural Network Surrogate
20
作者 Yaofeng Chen Li You 《Chinese Physics Letters》 2025年第10期117-128,共12页
Quantum optimal control(QOC)relies on accurately modeling system dynamics and is often challenged by unknown or inaccessible interactions in real systems.Taking an unknown collective spin system as an example,this wor... Quantum optimal control(QOC)relies on accurately modeling system dynamics and is often challenged by unknown or inaccessible interactions in real systems.Taking an unknown collective spin system as an example,this work introduces a machine-learning-based,data-driven scheme to overcome the challenges encountered,with a trained neural network(NN)assuming the role of a surrogate model that captures the system’s dynamics and subsequently enables QOC to be performed on the NN instead of on the real system.The trained NN surrogate proves effective for practical QOC tasks and is further demonstrated to be adaptable to different experimental conditions,remaining robust across varying system sizes and pulse durations. 展开更多
关键词 neural network quantum optimal control surrogate model trained neural network nn assuming quantum optimal control qoc relies collective spin system optimal control captures system s dynamics
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部