期刊文献+
共找到3,874篇文章
< 1 2 194 >
每页显示 20 50 100
Prediction of joint roughness coefficient via hybrid machine learning model combined with principal components analysis 被引量:1
1
作者 Shijie Xie Hang Lin +2 位作者 Tianxing Ma Kang Peng Zhen Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2291-2306,共16页
Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC... Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability. 展开更多
关键词 Rock discontinuities Joint roughness coefficient(JRC) Roughness characterization Principal components analysis(pca) Machine learning
在线阅读 下载PDF
Assessment of Spatial Water Quality Variations in Shallow Wells Using Principal Component Analysis in Half London Ward, Tanzania
2
作者 Matungwa William Zacharia Katambara 《Journal of Water Resource and Protection》 2025年第2期108-143,共36页
Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Wa... Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region. 展开更多
关键词 Groundwater Contamination Principal Component analysis (pca) Shallow Well Water Quality Anthropogenic Pollution Hydrogeological Processes
在线阅读 下载PDF
Prediction of rock mass classification in tunnel boring machine tunneling using the principal component analysis (PCA)-gated recurrent unit (GRU) neural network
3
作者 Ke Man Liwen Wu +3 位作者 Xiaoli Liu Zhifei Song Kena Li Nawnit Kumar 《Deep Underground Science and Engineering》 2024年第4期413-425,共13页
Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project... Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage. 展开更多
关键词 gated recurrent unit(GRU) prediction of rock mass classification principal component analysis(pca) TBM tunneling
原文传递
基于PCA-Logistic回归模型的图像过曝光区域检测方法
4
作者 陈涛 符均 +1 位作者 丁子硬 陈希 《制造业自动化》 2025年第4期40-47,共8页
针对过曝光区域检测问题,提出了一种基于主成分分析(Principal Components Analysis,PCA)和Logistic回归的过曝光图像饱和像素检测方法。首先通过研究分析过曝光图像的显著性特征,提取了亮度及颜色特征、人类视觉修正的饱和度特征、空... 针对过曝光区域检测问题,提出了一种基于主成分分析(Principal Components Analysis,PCA)和Logistic回归的过曝光图像饱和像素检测方法。首先通过研究分析过曝光图像的显著性特征,提取了亮度及颜色特征、人类视觉修正的饱和度特征、空间邻域特征、局部熵特征、灰度对比度特征等变量作为检测图像过曝光的初始指标;接着利用主成分分析方法对原始指标变量进行降维处理,然后利用建立的L2正则化的Logistic回归模型进行分析预测;最后与其他过曝光检测算法进行了对比分析,并在某安防监控图像中进行了过曝光区域检测效果验证。结果表明,该模型检测结果更具整体性,检测区域更紧凑,也更符合人眼对过曝光区域的视觉感知。 展开更多
关键词 过曝光图像 饱和像素检测 主成分分析(pca) LOGISTIC回归分析
在线阅读 下载PDF
基于PCA-BP神经网络的应急响应物资精准需求预测模型构建——以地震灾害响应初期的灾民生活物资需求为例
5
作者 李尧远 曲政澍 《灾害学》 北大核心 2025年第4期31-36,共6页
为提升灾害应急响应能力,实现响应初期应急物资精准供给,保障灾民基本生活需求,该文以我国部分地震灾害为例,收集地震数据,以紧急转移安置人口数量为预测目标,选取相关地震指标为影响因素,构建基于主成分分析(PCA)与反向传播(BP)神经网... 为提升灾害应急响应能力,实现响应初期应急物资精准供给,保障灾民基本生活需求,该文以我国部分地震灾害为例,收集地震数据,以紧急转移安置人口数量为预测目标,选取相关地震指标为影响因素,构建基于主成分分析(PCA)与反向传播(BP)神经网络的紧急转移安置人口数量预测模型。在此基础上,结合紧急转移安置人口数量与灾民生活物资需求的关系,建立物资需求预测模型。结果表明:该模型在在紧急转移安置人口预测方面具有更高的精度,能够较为准确估算紧急转移安置人口数量;在生活物资需求预测方面,经算例验证,该模型具备一定实践价值,可为应急响应初期的物资配置决策提供科学依据。 展开更多
关键词 应急响应 需求预测 地震 主成分分析法(pca) 反向(BP)神经网络
在线阅读 下载PDF
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines 被引量:1
6
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning Principal component analysis(pca) Artificial neural network Mining engineering
在线阅读 下载PDF
基于PCA-TSO-BPNN模型的海底管道内腐蚀速率预测研究 被引量:2
7
作者 肖荣鸽 刘国庆 +3 位作者 刘博 魏王颖 庄琦 靳帅帅 《热加工工艺》 北大核心 2025年第4期82-88,共7页
近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成... 近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成分分析(Principal Component Analysis,PCA)和金枪鱼群算法(Tuna Swarm Optimization,TSO)优化BP神经网络的海底管道内腐蚀速率预测组合模型PCA-TSO-BPNN。运用PCA进行数据降维,筛选出海底管道内腐蚀速率的主要影响因素;建立海底管道内腐蚀速率BPNN预测模型,并采用TSO算法对BPNN预测模型的权值和阈值参数进行寻优;利用PCA-TSO-BPNN组合模型对海底管道内腐蚀速率进行预测,并与对比模型进行比较,验证PCA-TSO-BPNN组合模型的可行性和可靠性。结果表明:PCA-TSO-BPNN组合模型的平均绝对百分误差(MAPE)和均方根误差(RMSE)分别为1.8441%和0.06757,远低于对比模型,组合模型具有较高的预测精度和稳定性,可为海底管道内腐蚀防护和流动保障提供决策支持。 展开更多
关键词 BP神经网络 主成分分析 金枪鱼群算法 海底管道 腐蚀速率预测
原文传递
应用奇异值分解(SVD)-主成分分析(PCA)组合模型定量圈定与评价腾冲地块锡钨和铅锌多金属找矿靶区 被引量:3
8
作者 郑澳月 费金娜 +3 位作者 陈永清 宁妍云 曹一琳 赵鹏大 《地学前缘》 北大核心 2025年第1期283-301,共19页
成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成... 成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成矿元素组主成分得分进一步分解为两个部分:(1)成矿元素组合区域异常分量,能够表征在地壳演化过程中,由各种地质作用(岩浆作用、沉积作用和/或变质作用)形成的有利于成矿的高背景区域;(2)成矿元素组合局部异常分量,能够表征成矿作用引起的,叠加在成矿元素组合区域异常分量之上的成矿元素组合局部异常分量,应用局部异常分量能够识别找矿靶区。本次研究,首先基于国家1∶200000水系沉积物地球化学数据,应用主成分分析建立不同类型的成矿元素组;其次,利用SVD从成矿元素组的主成分得分中识别出不同类型成矿过程引起的成矿元素组合局部异常分量;最后,应用局部异常分量识别找矿靶区。最终在腾冲地块圈定15处找矿靶区,其中Sn-W找矿靶区8处,Pb-Zn-Ag找矿靶区7处。预测Sn-W潜在资源量915 Mt,Pb-Zn-Ag潜在资源量792 Mt。 展开更多
关键词 SVD pca 成矿元素组合异常分量 地球化学块体 锡钨和铅锌多金属矿 腾冲地块 西南地区
在线阅读 下载PDF
Optimizing data aggregation and clustering in Internet of things networks using principal component analysis and Q-learning 被引量:1
9
作者 Abhishek Bajpai Harshita Verma Anita Yadav 《Data Science and Management》 2024年第3期189-196,共8页
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations im... The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network. 展开更多
关键词 Wireless sensor network Principal component analysis(pca) Reinforcement learning Data aggregation
在线阅读 下载PDF
基于CEEMDAN-PCA-AC-CNN模型的离心泵故障识别技术 被引量:1
10
作者 李曈希 刘志龙 +3 位作者 罗骞 曾真 王钦超 聂常华 《核动力工程》 北大核心 2025年第1期265-272,共8页
为确保离心泵的长期健康稳定运行,对其进行在线监测与故障识别显得尤为重要。本文提出了一种基于自适应噪声的集合经验模态分解(CEEMDAN)-主成分分析(PCA)-自相关(AC)-卷积神经网络(CNN)的设备故障识别模型。首先将采集到的振动信号进行... 为确保离心泵的长期健康稳定运行,对其进行在线监测与故障识别显得尤为重要。本文提出了一种基于自适应噪声的集合经验模态分解(CEEMDAN)-主成分分析(PCA)-自相关(AC)-卷积神经网络(CNN)的设备故障识别模型。首先将采集到的振动信号进行CEEMDAN,对得到的内涵模态函数(IMF)分量进行判别,剔除噪声分量,重构第一轮去噪信号。再通过PCA对一轮去噪的信号进行二次降噪处理。然后将经历2次降噪处理后的信号进行AC处理,送入CNN作为输入数据,对模型进行训练。通过对某离心泵故障进行实验验证,结果表明:本文提出的方法相较于传统双层降噪结合CNN的算法、CEEMD-小波降噪-AC-CNN等算法具有更好的抗干扰性能与更快的模型收敛速度,具有更高的识别准确率与更好的鲁棒性,在同等量级下,识别准确率高达97.9%。 展开更多
关键词 自适应噪声的集合经验模态分解(CEEMDAN) 主成分分析(pca) 信号降噪 卷积神经网络(CNN) 故障识别
原文传递
Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis(PCA)and Long Short Term Memory(LSTM) 被引量:2
11
作者 YANG Qirui XU Kaizhou +2 位作者 ZHENG Xiaohu XIAO Lei BAO Jinsong 《Journal of Donghua University(English Edition)》 EI CAS 2019年第4期364-368,共5页
The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cut... The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy. 展开更多
关键词 HEALTH CONDITION recognition MILLING TOOL principal component analysis(pca) long short TERM memory(LSTM)
在线阅读 下载PDF
VARIABILITY OF DAILY PRECIPITATION IN CHINA(1980-1993): PCA AND WAVELET ANALYSIS OF OBSERVATION AND ECMWF REANALYSIS DATA
12
作者 崔茂常 朱海 +2 位作者 练树民 KlausArpe LydiaDümenil 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2000年第2期117-110,118-125,共10页
In this study, principal component analysis(PCA) and complex Morlet wavelet transform were used with daily rainfall in China for the period 1980-1993(1 May-31 Dec.) from observation and ECMWF reanalysis to study its v... In this study, principal component analysis(PCA) and complex Morlet wavelet transform were used with daily rainfall in China for the period 1980-1993(1 May-31 Dec.) from observation and ECMWF reanalysis to study its variability and evaluate the validation of reanalyzed precipitation. The results showed that northward movement of the summer rain belt was a wavelike propagation, which was always accompanied by rainfall breaks and could be treated as one event under time scale of about 1 month only. The first 4 EOFs accounted for 28% and 35% of total variance from observation and reanalysis, respectively, and were roughly consistent with each other. The first and third EOFs for observation mainly represented interweekly, interseasonal and interannual variations and contained some summer intraseasonal fluctuations also. The second and fourth ones mainly represented some rather strong summer intraseasonal fluctuations for a paticular year and contained interweekly, interseasonal and interannual variations also. Although there is still room for improvement, the ECMWF reanalysis is the best available dataset with global coverage and daily variability. 展开更多
关键词 DAILY precipitations in China ECMWF REanalysis pca and WAVELET analysis
原文传递
一种基于数据驱动和负时间序列PCA的滚动轴承健康指标构建方法
13
作者 王栩沂 丁泽良 +1 位作者 米承继 王思睿 《机电工程技术》 2025年第5期103-107,196,共6页
滚动轴承在制造和装配等过程中存在不确定性因素,导致滚动轴承健康指标初始退化程度不一致,对早期故障不敏感。针对此问题提出了一种基于数据驱动方法和负时间序列主成分分析法(PCA)的表征滚动轴承退化性能的健康指标构建方法。首先,基... 滚动轴承在制造和装配等过程中存在不确定性因素,导致滚动轴承健康指标初始退化程度不一致,对早期故障不敏感。针对此问题提出了一种基于数据驱动方法和负时间序列主成分分析法(PCA)的表征滚动轴承退化性能的健康指标构建方法。首先,基于数据驱动方法从轴承的原始振动数据中提取16个表征轴承各退化阶段所有故障信息的时域特征;然后,使用均值化方法对特征数据进行降噪,基于标准化方法统一量纲;最后,利用负时间序列的主成分分析法构建轴承的健康指标。通过在实验数据中的应用,并与有效值(RMS)指标进行对比,结果表明负时序指标均先于RMS指标发现早期故障,验证了此方法的有效性。 展开更多
关键词 滚动轴承 健康指标 数据驱动 主成分分析(pca)
在线阅读 下载PDF
基于PCA和熵权TOPSIS法的番茄育苗基质筛选
14
作者 张杰 沈晖 张枭坪 《北方园艺》 北大核心 2025年第21期87-95,共9页
以‘卡美其’番茄品种为试材,采用8种不同配比的基质进行育苗试验,综合运用主成分分析和熵权TOPSIS法,研究不同基质配方对番茄幼苗生长的影响,以期筛选出适宜宁夏地区番茄育苗的理想基质配方。结果表明:进口泥炭添加适量国产基质有利于... 以‘卡美其’番茄品种为试材,采用8种不同配比的基质进行育苗试验,综合运用主成分分析和熵权TOPSIS法,研究不同基质配方对番茄幼苗生长的影响,以期筛选出适宜宁夏地区番茄育苗的理想基质配方。结果表明:进口泥炭添加适量国产基质有利于番茄幼苗的生长发育;S7处理(珍珠岩∶蛭石∶进口泥炭∶国产草炭基质=1∶1∶10∶20(体积比))的番茄幼苗出苗率最高,幼苗株高、茎粗、植株干鲜质量及壮苗指数表现最优,各指标较CK分别提高了7.9%、10.6%、8.5%、11.4%及13.4%;该处理综合评价最高,可作为理想的基质配方在当地进行推广应用。 展开更多
关键词 番茄 基质育苗 主成分分析 熵权TOPSIS 壮苗指数
原文传递
基于改进型PCA全极化雷达回波信号融合的动目标检测方法
15
作者 庞岳 岳富占 +4 位作者 夏正欢 张闯 王洪强 高文宁 张瑶 《现代雷达》 北大核心 2025年第2期126-133,共8页
树林遮蔽场景下的雷达回波信号存在信噪比低、信号幅度和相位起伏等问题,极大地增加了目标检测难度。针对信号级中低分辨率雷达探测树林遮蔽目标的应用需求,文中研究了一种基于改进型主成分分析(PCA)全极化雷达回波信号融合的动目标检... 树林遮蔽场景下的雷达回波信号存在信噪比低、信号幅度和相位起伏等问题,极大地增加了目标检测难度。针对信号级中低分辨率雷达探测树林遮蔽目标的应用需求,文中研究了一种基于改进型主成分分析(PCA)全极化雷达回波信号融合的动目标检测方法。该方法首先在杂波背景下提取动目标信号,并利用改进型PCA进行全极化雷达回波信号融合;然后分别在时间维和距离维进行目标检测,并通过非相参积累方法重检测,有效排除目标混叠和虚警干扰,从而检测出目标并提取了其关注区域;最后通过自主研发的L波段全极化雷达系统,对该方法进行了实验验证。实验结果表明:该方法对于树林遮蔽环境下动目标具有很好的检测效果,显著提升了L波段全极化雷达在树林遮蔽条件下的目标检测性能。 展开更多
关键词 L波段全极化雷达 主成分分析 数据融合 树林遮蔽场景 目标检测
原文传递
基于PCA−Transformer的工作面瓦斯浓度预测算法研究 被引量:1
16
作者 杨建 舒龙勇 +2 位作者 张书林 秦凯 崔聪 《工矿自动化》 北大核心 2025年第5期1-7,共7页
针对目前工作面瓦斯浓度预测的研究样本在特征维度及数据体量方面偏小,难以从大规模时序数据中挖掘出瓦斯浓度长时间尺度上波动规律的问题,提出一种基于主成分分析(PCA)−Transformer的工作面瓦斯浓度预测算法。首先,对瓦斯浓度原始数据... 针对目前工作面瓦斯浓度预测的研究样本在特征维度及数据体量方面偏小,难以从大规模时序数据中挖掘出瓦斯浓度长时间尺度上波动规律的问题,提出一种基于主成分分析(PCA)−Transformer的工作面瓦斯浓度预测算法。首先,对瓦斯浓度原始数据进行数据清洗,采用最小−最大特征缩放标准化公式对清洗后的数据进行归一化操作。然后,利用PCA对7种影响工作面瓦斯浓度的因素(上隅角瓦斯浓度、回风流瓦斯浓度、氧气浓度、一氧化碳浓度、温度、纯流量、风速)进行降维处理,有效剔除与工作面浓度相关性较低的影响因素。最后,将处理后的训练集输入到Transformer模型,通过编码器、解码器提取瓦斯浓度内在的变化规律和特征。以某高瓦斯矿井224工作面监测数据为样本,利用PCA−Transformer预测模型与长短时记忆神经网络(LSTM)、PCA−LSTM及Transformer等预测模型进行对比分析,结果表明:①PCA−Transformer模型的平均绝对误差为0.0203,均方误差为0.0472,运行时间为86 s,能够满足煤矿生产对瓦斯浓度预测的精度与时效要求。②相较于LSTM,PCA−LSTM,Transformer等预测模型,PCA−Transformer预测模型能够更好地拟合瓦斯浓度变化趋势,有效识别波峰、波谷序列特征,计算耗时最少,验证了PCA−Transformer预测模型的有效性。 展开更多
关键词 工作面瓦斯浓度预测 瓦斯时序数据 主成分分析 TRANSFORMER 降维处理
在线阅读 下载PDF
Analysis of PCA Method in Image Recognition with MATALAB
17
作者 ZHAO Ping 《枣庄学院学报》 2014年第4期124-126,共3页
The growing need for effective biometric identification is widely acknowledged.Human face recognition is an important area in the field of biometrics.It has been an active area of research for several decades,but stil... The growing need for effective biometric identification is widely acknowledged.Human face recognition is an important area in the field of biometrics.It has been an active area of research for several decades,but still remains a challenging problem because of the complexity of the human face.The Principal Component Analysis(PCA),or the eigenface method,is a de-facto standard in human face recognition.In this paper,the principle of PCA is introduced and the compressing and rebuilding of the image is accomplished with matlab program. 展开更多
关键词 analysis pca METHOD IMAGE RECOGNITION MATLAB
在线阅读 下载PDF
Discrete wavelet and modified PCA decompositions for postural stability analysis in biometric applications
18
作者 Dhouha Maatar Regis Fournier +1 位作者 Zied Lachiri Amine Nait-Ali 《Journal of Biomedical Science and Engineering》 2011年第8期543-551,共9页
The aim of this study is to compare the Discrete wavelet decomposition and the modified Principal Analysis Component (PCA) decomposition to analyze the stabilogram for the purpose to provide a new insight about human ... The aim of this study is to compare the Discrete wavelet decomposition and the modified Principal Analysis Component (PCA) decomposition to analyze the stabilogram for the purpose to provide a new insight about human postural stability. Discrete wavelet analysis is used to decompose the stabilogram into several timescale components (i.e. detail wavelet coefficients and approximation wavelet coefficients). Whereas, the modified PCA decomposition is applied to decompose the stabilogram into three components, namely: trend, rambling and trembling. Based on the modified PCA analysis, the trace of analytic trembling and rambling in the complex plan highlights a unique rotation center. The same property is found when considering the detail wavelet coefficients. Based on this property, the area of the circle in which 95% of the trace’s data points are located, is extracted to provide important information about the postural equilibrium status of healthy subjects (average age 31 ± 11 years). Based on experimental results, this parameter seems to be a valuable parameter in order to highlight the effect of visual entries, stabilogram direction, gender and age on the postural stability. Obtained results show also that wavelets and the modified PCA decomposition can discriminate the subjects by gender which is particularly interesting in biometric applications and human stability simulation. Moreover, both techniques highlight the fact that male are less stable than female and the fact that there is no correlation between human stability and his age (under 60). 展开更多
关键词 Approximation WAVELET COEFFICIENTS Detail WAVELET COEFFICIENTS Discrete WAVELET analysis pca Decomposition Phase Rambling Stabilogram Trem-bling Trend BIOMETRICS
在线阅读 下载PDF
基于PCA-BO-XGBoost的避雷器健康状态智能诊断
19
作者 张佩瑄 韩永霞 +1 位作者 施剑峰 何少敏 《电气自动化》 2025年第6期83-85,共3页
针对传统避雷器健康诊断方法依赖单一特征难以准确预警失效的问题,提出了一种新的智能诊断模型。首先,开展氧化锌电阻片冲击老化试验构建数据集,采用主成分分析数据降维,结合K-means聚类结果和运维需求,将避雷器健康状态划分为三级;其次... 针对传统避雷器健康诊断方法依赖单一特征难以准确预警失效的问题,提出了一种新的智能诊断模型。首先,开展氧化锌电阻片冲击老化试验构建数据集,采用主成分分析数据降维,结合K-means聚类结果和运维需求,将避雷器健康状态划分为三级;其次,对比各类机器学习算法,提出基于主成分分析-贝叶斯优化-极限梯度提升的最优诊断模型;最后,全新数据集迁移测试的准确率、召回率和F 1分数分别为92.73%、91.19%和91.70%。所提模型具有较高的诊断精度和良好的泛化能力,为提升电网设备的智能化运维水平提供了有力的技术支撑。 展开更多
关键词 避雷器 冲击老化试验 健康状态诊断 主成分分析 迁移测试
在线阅读 下载PDF
基于层次自收敛PCA-OCSVM算法的入侵检测方法研究 被引量:1
20
作者 郭建明 张红卓 +1 位作者 马涛 张永兵 《价值工程》 2025年第4期149-151,共3页
随着网络技术的迅猛发展,网络安全问题日益突出,尤其是网络入侵检测领域。传统的入侵检测方法往往存在效率低下或准确性不足等问题。本文提出了一种基于层次自收敛主成分分析(PCA)与单类支持向量机(OCSVM)结合的入侵检测方法,旨在提高... 随着网络技术的迅猛发展,网络安全问题日益突出,尤其是网络入侵检测领域。传统的入侵检测方法往往存在效率低下或准确性不足等问题。本文提出了一种基于层次自收敛主成分分析(PCA)与单类支持向量机(OCSVM)结合的入侵检测方法,旨在提高入侵检测的效率和准确性。首先,采用层次化的方法对数据进行预处理,通过自收敛PCA降维处理,优化特征集,并减少噪声干扰和计算复杂度。随后,利用OCSVM对处理后的数据进行训练与分类,以识别正常与异常行为。实验结果表明,该方法在多个标准数据集上具有较好的检测性能,相比传统方法,在检测率、误报率及检测速度等关键指标上均有所提升。本研究为网络入侵检测技术的发展提供了新的思路和方法。 展开更多
关键词 入侵检测 主成分分析(pca) 单类支持向量机(OCSVM) 自收敛算法
在线阅读 下载PDF
上一页 1 2 194 下一页 到第
使用帮助 返回顶部