In ground water quality studies multivariate statistical techniques like Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA), Factor Analysis (FA) and Multivariate Analysis of Variance (MANOVA) wer...In ground water quality studies multivariate statistical techniques like Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA), Factor Analysis (FA) and Multivariate Analysis of Variance (MANOVA) were employed to evaluate the principal factors and mechanisms governing the spatial variations and to assess source apportionment at Lawspet area in Puducherry, India. PCA/FA has made the first known factor which showed the anthropogenic impact on ground water quality and this dominant factor explained 82.79% of the total variance. The other four factors identified geogenic and hardness components. The distribution of first factor scores portray high loading for EC, TDS, Na+ and Cl−(anthropogenic) in south east and south west parts of the study area, whereas other factor scores depict high loading for HCO3−, Mg2+, Ca2+ and TH (hardness and geogenic) in the north west and south west parts of the study area. K+ and SO42−(geogenic) are dominant in south eastern direction. Further MANOVA showed that there are significant differences between ground water quality parameters. The spatial distribution maps of water quality parameters have rendered a powerful and practical visual tool for defining, interpreting, and distinguishing the anthropogenic, hardness and geogenic factors in the study area. Further the study indicated that multivariate statistical methods have successfully assessed the ground water qualitatively and spatially with a more effective step towards ground water quality management.展开更多
To assess the quality of groundwater resources, samples were collected from 22 points for mean annual water years of 2003 and 2015 (mean minimum and maximum water table), and 19 parameters were examined and calculated...To assess the quality of groundwater resources, samples were collected from 22 points for mean annual water years of 2003 and 2015 (mean minimum and maximum water table), and 19 parameters were examined and calculated. One of the objectives of this study was to evaluate the groundwater quality of the Ghaemshahr plain which includes the study of spatial and temporal changes of groundwater quality in different sectors and factors affecting it. In this study, combining statistical methods such as Pearson correlation coefficient, factor analysis, principal component analysis, and combined diagrams with hydrochemical methods are used to assess the chemical quality of groundwater. Samples were categorized by using cluster method and then the same samples were identified. Accordingly, samples were classified in four categories which represent the quality of groundwater in different districts. Factor analysis was used to identify the factors affecting the geochemical processes of the aquifer. Statistical methods showed that they can be used to complete the conventional methods in hydro-geochemistry as well as very precise results can be achieved. Based on the obtained results, saturation index of Ghaemshahr groundwater was super-saturated;and groundwater quality control of Ghaemshahr plain is hold by processes such as dissolution of halide (salt water intrusion of Caspian Sea and brackish fossil aquifers), calcite and dolomite (dissolution of limestone, dolomite, and marl in height), weathering sodium-rich plagioclases (clay minerals), and ion exchange.展开更多
Teachers are key participants in universities,and the performance appraisal of teacher is an important part of college work.By analyzing the data of behavior generated by different departments in university,analytic h...Teachers are key participants in universities,and the performance appraisal of teacher is an important part of college work.By analyzing the data of behavior generated by different departments in university,analytic hierarchy process(AHP) is used to establish the preliminary library of performance indicators for teachers,and the correlation among all the performance indicators is inspected by using data mining method at this time.On this basis,a more objective,comprehensive and scientific performance appraisal system is constructed through principal components analysis(PCA),which is more suitable for university itself.Finally,in order to solve the problems existed in current performance appraisal system,a dynamic evaluation model is put forward by regulating the weight of indicator according to the historical data,highlighting the continuity of the system.展开更多
文摘In ground water quality studies multivariate statistical techniques like Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA), Factor Analysis (FA) and Multivariate Analysis of Variance (MANOVA) were employed to evaluate the principal factors and mechanisms governing the spatial variations and to assess source apportionment at Lawspet area in Puducherry, India. PCA/FA has made the first known factor which showed the anthropogenic impact on ground water quality and this dominant factor explained 82.79% of the total variance. The other four factors identified geogenic and hardness components. The distribution of first factor scores portray high loading for EC, TDS, Na+ and Cl−(anthropogenic) in south east and south west parts of the study area, whereas other factor scores depict high loading for HCO3−, Mg2+, Ca2+ and TH (hardness and geogenic) in the north west and south west parts of the study area. K+ and SO42−(geogenic) are dominant in south eastern direction. Further MANOVA showed that there are significant differences between ground water quality parameters. The spatial distribution maps of water quality parameters have rendered a powerful and practical visual tool for defining, interpreting, and distinguishing the anthropogenic, hardness and geogenic factors in the study area. Further the study indicated that multivariate statistical methods have successfully assessed the ground water qualitatively and spatially with a more effective step towards ground water quality management.
文摘To assess the quality of groundwater resources, samples were collected from 22 points for mean annual water years of 2003 and 2015 (mean minimum and maximum water table), and 19 parameters were examined and calculated. One of the objectives of this study was to evaluate the groundwater quality of the Ghaemshahr plain which includes the study of spatial and temporal changes of groundwater quality in different sectors and factors affecting it. In this study, combining statistical methods such as Pearson correlation coefficient, factor analysis, principal component analysis, and combined diagrams with hydrochemical methods are used to assess the chemical quality of groundwater. Samples were categorized by using cluster method and then the same samples were identified. Accordingly, samples were classified in four categories which represent the quality of groundwater in different districts. Factor analysis was used to identify the factors affecting the geochemical processes of the aquifer. Statistical methods showed that they can be used to complete the conventional methods in hydro-geochemistry as well as very precise results can be achieved. Based on the obtained results, saturation index of Ghaemshahr groundwater was super-saturated;and groundwater quality control of Ghaemshahr plain is hold by processes such as dissolution of halide (salt water intrusion of Caspian Sea and brackish fossil aquifers), calcite and dolomite (dissolution of limestone, dolomite, and marl in height), weathering sodium-rich plagioclases (clay minerals), and ion exchange.
基金985 Construction Projects of Tongji,China(No.4218142801)
文摘Teachers are key participants in universities,and the performance appraisal of teacher is an important part of college work.By analyzing the data of behavior generated by different departments in university,analytic hierarchy process(AHP) is used to establish the preliminary library of performance indicators for teachers,and the correlation among all the performance indicators is inspected by using data mining method at this time.On this basis,a more objective,comprehensive and scientific performance appraisal system is constructed through principal components analysis(PCA),which is more suitable for university itself.Finally,in order to solve the problems existed in current performance appraisal system,a dynamic evaluation model is put forward by regulating the weight of indicator according to the historical data,highlighting the continuity of the system.