The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cut...The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy.展开更多
Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project...Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage.展开更多
Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC...Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.展开更多
Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Wa...Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region.展开更多
In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusi...In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusion method,Principal Component Analysis(PCA)method has the shortcoming of losing small target,this paper presents a new fusion method of infrared polarization images based on combination of Nonsubsampled Shearlet Transformation(NSST)and improved PCA.This method can make full use of the effectiveness to image details expressed by NSST and the characteristics that PCA can highlight the main features of images.The combination of the two methods can integrate the complementary features of themselves to retain features of targets and image details fully.Firstly,intensity and polarization images are decomposed into low frequency and high frequency components with different directions by NSST.Secondly,the low frequency components are fused with improved PCA,while the high frequency components are fused by joint decision making rule with local energy and local variance.Finally,the fused image is reconstructed with the inverse NSST to obtain the final fused image of infrared polarization.The experiment results show that the method proposed has higher advantages than other methods in terms of detail preservation and visual effect.展开更多
Evaluating the consistency of herb injectable formulations could improve their product quality and clinical safety,particularly concerning the composition and content levels of trace ingredients.Panax notoginseng Sapo...Evaluating the consistency of herb injectable formulations could improve their product quality and clinical safety,particularly concerning the composition and content levels of trace ingredients.Panax notoginseng Saponins Injection(PNSI),widely used in China for treating acute cardiovascular diseases,contains low-abundance(10%-25%)and trace saponins in addition to its five main constituents(notoginsenoside R1,ginsenoside Rg1,ginsenoside Re,ginsenoside Rb1,and ginsenoside Rd).This study aimed to establish a robust analytical method and assess the variability in trace saponin levels within PNSI from different vendors and formulation types.To achieve this,a liquid chromatography-triple quadrupole mass spectrometry(LC-MS/MS)method employing multiple ions monitoring(MIM)was developed.A“post-column valve switching”strategy was implemented to eliminate highly abundant peaks(NR_(1),Rg_(1),and Re)at 26 min.A total of 51 saponins in PNSI were quantified or relatively quantified using 18 saponin standards,with digoxin as the internal standard.This study evaluated 119 batches of PNSI from seven vendors,revealing significant variability in trace saponin levels among different vendors and formulation types.These findings highlight the importance of consistent content in low-abundance and trace saponins to ensure product control and clinical safety.Standardization of these ingredients is crucial for maintaining the quality and effectiveness of PNSI in treating acute cardiovascular diseases.展开更多
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl...Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.展开更多
In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang ...In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang Plain, Northeast China. The basic principle of the PCA is that the pairs of parameters which are highly correlated and linear with each other would contribute the same information to an assessment and one of them should be eliminated. The method of the PCA is that a correlation relationship among candidate parameters is examined before the FSE. If there is an apparent nonlinear or curvilinear relationship between two parameters, then both will be retained; if the correlation is significant (p<0.01), and the scatter plot suggests a linear relationship, then one of them will be deleted. However, which one will be deleted? For solving this problem, a sensitivity test was conducted and the higher sensitivity parameters remained. The results indicate that the original data should be preprocessed through the PCA for redundancy and variability. The study shows that introducing the PCA into the FSE can simplify the FSE calculation process greatly, while the results have not been changed much.展开更多
Detection of crop health conditions plays an important role in making control strategies of crop disease and insect damage and gaining high-quality production at late growth stages. In this study, hyperspectral reflec...Detection of crop health conditions plays an important role in making control strategies of crop disease and insect damage and gaining high-quality production at late growth stages. In this study, hyperspectral reflectance of rice panicles was measured at the visible and near-infrared regions. The panicles were divided into three groups according to health conditions: healthy panicles, empty panicles caused by Nilaparvata lugens St^l, and panicles infected with Ustilaginoidea virens. Low order derivative spectra, namely, the first and second orders, were obtained using different techniques. Principal component analysis (PCA) was performed to obtain the principal component spectra (PCS) of the foregoing derivative and raw spectra to reduce the reflectance spectral dimension. Support vector classification (SVC) was employed to discriminate the healthy, empty, and infected panicles, with the front three PCS as the in- dependent variables. The overall accuracy and kappa coefficient were used to assess the classification accuracy of SVC. The overall accuracies of SVC with PCS derived from the raw, first, and second reflectance spectra for the testing dataset were 96.55%, 99.14%, and 96.55%, and the kappa coefficients were 94.81%, 98.71%, and 94.82%, respectively. Our results demonstrated that it is feasible to use visible and near-infrared spectroscopy to discriminate health conditions of rice panicles.展开更多
This paper introduces a new enhancement method for multi-spectral satellite remote sensing imagery,based on principal component analysis(PCA) and intensity-hue-saturation(IHS) transformations.The PCA and the IHS trans...This paper introduces a new enhancement method for multi-spectral satellite remote sensing imagery,based on principal component analysis(PCA) and intensity-hue-saturation(IHS) transformations.The PCA and the IHS transformations are used to separate the spatial information of the multi-spectral image into the first principal component and the intensity component,respectively.The enhanced image is obtained by replacing the intensity component of the IHS transformation with the first principal component of the PCA transformation,and undertaking the inverse IHS transformation.The objective of the proposed method is to make greater use of the spatial and spectral information contained in the original multi-spectral image.On the basis of the visual and statistical analysis results of the experimental study,we can conclude that the proposed method is an ideal new way for multi-spectral image quality enhancement with little color distortion.It has potential advantages in image mapping optimization,object recognition,and weak information sharpening.展开更多
To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on princip...To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.展开更多
Drought stress is one of the major constraints to rice (Oryza sativa L.) production and yield stability especially in rainfed ecosystems and is getting worse as the climate changes worldwide. Dongxiang wild rice (D...Drought stress is one of the major constraints to rice (Oryza sativa L.) production and yield stability especially in rainfed ecosystems and is getting worse as the climate changes worldwide. Dongxiang wild rice (DXWR) Oryza rufipogon Griff., contains drought resistant gene. Improving drought resistance of cultivars is crucial to increase and stabilize rice grain yield via transferring resistant gene from species related to rice. In this paper, four upland rice, sixty backcross inbred lines (BILs) derived from BC1F5 of R974//DXWR/R974, and their parents were employed to evaluate drought-resistance at seedling stage in the greenhouse. Nine traits were recorded for assessment of drought resistance, including maximum root length (MRL), number of roots (NR), shoot length (SL), dry root weight (DRW), fresh root weight (FRW), root relative water content (RRWC), leaf relative water content (LRWC), level for rolling leaf (LRL), and seedling survivability under repeat drought (SSRD). Using more than 88% of accumulative contribution resulted from the principal component analysis (PCA), the nine traits were classified into five independent principal components and the line 1949 showed the highest resistance. Analysis on the stepwise regression equation and correlation demonstrated that MRL, RN, FRW, and RRWC significantly influenced the drought resistance, thus could be used as comprehensive index for drought resistance at the seedling stage. Using the major gene plus polygene mixed inheritance model of quantitative traits, the inheritance of drought-resistance of BIL population at seedling stage was mostly controlled by two independent genes plus polygene. As a result, the DXWR could be precious resources for genetic improvement of drought resistance in cultivated rice.展开更多
Concentration of elements or element groups in a geological body is the result of multiple stages of rockforming and ore-forming geological processes.An ore-forming element group can be identified by PCA(principal com...Concentration of elements or element groups in a geological body is the result of multiple stages of rockforming and ore-forming geological processes.An ore-forming element group can be identified by PCA(principal component analysis)and be separated into two components using BEMD(bi-dimensional empirical mode decomposition):(1)a high background component which represents the ore-forming background developed in rocks through various geological processes favorable for mineralization(i.e.magmatism,sedimentation and/or metamorphism);(2)the anomaly component which reflects the oreforming anomaly that is overprinted on the high background component developed during mineralization.Anomaly components are used to identify ore-finding targets more effectively than ore-forming element groups.Three steps of data analytical procedures are described in this paper;firstly,the application of PCA to establish the ore-forming element group;secondly,using BEMD on the o re-forming element group to identify the anomaly components created by different types of mineralization processes;and finally,identifying ore-finding targets based on the anomaly components.This method is applied to the Tengchong tin-polymetallic belt to delineate ore-finding targets,where four targets for Sn(W)and three targets for Pb-Zn-Ag-Fe polymetallic mineralization are identified and defined as new areas for further prospecting.It is shown that BEMD combined with PCA can be applied not only in extracting the anomaly component for delineating the ore-finding target,but also in extracting the residual component for identifying its high background zone favorable for mineralization from its oreforming element group.展开更多
This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzh...This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzhou, China. First, citizens registered various items constituting desirable values of residential outdoor spaces through a preliminary questionnaire. The result proposed three general attributes (functional, aesthetic and ecological) and ten specific qualities of residential outdoor spaces. An analytic hierarchy process (AHP) was applied to an interview survey in order to clarify the weights among these attributes and qualities. Second, principal factors were extracted from the ten specific qualities with principal component analysis (PCA) for both the common case and the campus case. In addition, the variations of respondents’ groups were classified with cluster analysis (CA) using the results of the PCA. The results of the AHP application found that the public prefers the functional attribute, rather than the aesthetic attribute. The latter is always viewed as the core value of open spaces in the eyes of architects and designers. Fur-thermore, comparisons of ten specific qualities showed that the public prefers the open spaces that can be utilized conveniently and easily for group activities, because such spaces keep an active lifestyle of neighborhood communication, which is also seen to protect human-regarding residential environments. Moreover, different groups of respondents diverge largely in terms of gender, age, behavior and preference.展开更多
Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have ...Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation.展开更多
Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is...Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.展开更多
The principal component analysis (PCA) is used to analyze the high dimen- sional chemistry data of laminar premixed/stratified flames under strain effects. The first few principal components (PCs) with larger cont...The principal component analysis (PCA) is used to analyze the high dimen- sional chemistry data of laminar premixed/stratified flames under strain effects. The first few principal components (PCs) with larger contribution ratios axe chosen as the tabu- lated scalars to build the look-up chemistry table. Prior tests show that strained premixed flame structure can be well reconstructed. To highlight the physical meanings of the tabu- lated scalars in stratified flames, a modified PCA method is developed, where the mixture fraction is used to replace one of the PCs with the highest correlation coefficient. The other two tabulated scalars are then modified with the Schmidt orthogonalization. The modified tabulated scalars not only have clear physical meanings, but also contain passive scalars. The PCA method has good commonality, and can be extended for building the thermo-chemistry table including strain rate effects when different fuels are used.展开更多
A new watermarking scheme using principal component analysis (PCA) is described.The proposed method inserts highly robust watermarks into still images without degrading their visual quality. Experimental results are p...A new watermarking scheme using principal component analysis (PCA) is described.The proposed method inserts highly robust watermarks into still images without degrading their visual quality. Experimental results are presented, showing that the PCA based watermarks can resist malicious attacks including lowpass filtering, re scaling, and compression coding.展开更多
A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t...A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.展开更多
基金National Natural Science Foundation of China(No.51805079)Shanghai Natural Science Foundation,China(No.17ZR1400600)Fundamental Research Funds for the Central Universities,China(No.16D110309)
文摘The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy.
基金State Key Laboratory of Hydroscience and Hydraulic Engineering of Tsinghua University,Grant/Award Number:2019-KY-03Key Technology of Intelligent Construction of Urban Underground Space of North China University of Technology,Grant/Award Number:110051360022XN108-19+3 种基金Research Start-up Fund Project of North China University of Technology,Grant/Award Number:110051360002Yujie Project of North China University of Technology,Grant/Award Number:216051360020XN199/006National Natural Science Foundation of China,Grant/Award Numbers:51522903,51774184National Key R&D Program of China,Grant/Award Numbers:2018YFC1504801,2018YFC1504902。
文摘Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage.
基金funding from the National Natural Science Foundation of China (Grant No.42277175)the pilot project of cooperation between the Ministry of Natural Resources and Hunan Province“Research and demonstration of key technologies for comprehensive remote sensing identification of geological hazards in typical regions of Hunan Province” (Grant No.2023ZRBSHZ056)the National Key Research and Development Program of China-2023 Key Special Project (Grant No.2023YFC2907400).
文摘Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.
文摘Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region.
基金Open Fund Project of Key Laboratory of Instrumentation Science&Dynamic Measurement(No.2DSYSJ2015005)Specialized Research Fund for the Doctoral Program of Ministry of Education Colleges(No.20121420110004)
文摘In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusion method,Principal Component Analysis(PCA)method has the shortcoming of losing small target,this paper presents a new fusion method of infrared polarization images based on combination of Nonsubsampled Shearlet Transformation(NSST)and improved PCA.This method can make full use of the effectiveness to image details expressed by NSST and the characteristics that PCA can highlight the main features of images.The combination of the two methods can integrate the complementary features of themselves to retain features of targets and image details fully.Firstly,intensity and polarization images are decomposed into low frequency and high frequency components with different directions by NSST.Secondly,the low frequency components are fused with improved PCA,while the high frequency components are fused by joint decision making rule with local energy and local variance.Finally,the fused image is reconstructed with the inverse NSST to obtain the final fused image of infrared polarization.The experiment results show that the method proposed has higher advantages than other methods in terms of detail preservation and visual effect.
基金supported by the Science and Technology Service Network Initiative of the Chinese Academy of Sciences(STS,No.KFJ-STS-QYZD-2021-03-003)the Construction Projects of the Research Center for Notoginseng Health Products by the Department of Science and Technology of Guangxi Province(No.AD20297068)the Sanming Project of Medicine in Shenzhen(No.SZZYSM202106004).
文摘Evaluating the consistency of herb injectable formulations could improve their product quality and clinical safety,particularly concerning the composition and content levels of trace ingredients.Panax notoginseng Saponins Injection(PNSI),widely used in China for treating acute cardiovascular diseases,contains low-abundance(10%-25%)and trace saponins in addition to its five main constituents(notoginsenoside R1,ginsenoside Rg1,ginsenoside Re,ginsenoside Rb1,and ginsenoside Rd).This study aimed to establish a robust analytical method and assess the variability in trace saponin levels within PNSI from different vendors and formulation types.To achieve this,a liquid chromatography-triple quadrupole mass spectrometry(LC-MS/MS)method employing multiple ions monitoring(MIM)was developed.A“post-column valve switching”strategy was implemented to eliminate highly abundant peaks(NR_(1),Rg_(1),and Re)at 26 min.A total of 51 saponins in PNSI were quantified or relatively quantified using 18 saponin standards,with digoxin as the internal standard.This study evaluated 119 batches of PNSI from seven vendors,revealing significant variability in trace saponin levels among different vendors and formulation types.These findings highlight the importance of consistent content in low-abundance and trace saponins to ensure product control and clinical safety.Standardization of these ingredients is crucial for maintaining the quality and effectiveness of PNSI in treating acute cardiovascular diseases.
文摘Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.
基金Under the auspices of National Natural Science Foundation of China (No. 40830535)Knowledge Innovation Pro-gram of Chinese Academy of Sciences (No.KSCX2-YW-N-46-06)
文摘In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang Plain, Northeast China. The basic principle of the PCA is that the pairs of parameters which are highly correlated and linear with each other would contribute the same information to an assessment and one of them should be eliminated. The method of the PCA is that a correlation relationship among candidate parameters is examined before the FSE. If there is an apparent nonlinear or curvilinear relationship between two parameters, then both will be retained; if the correlation is significant (p<0.01), and the scatter plot suggests a linear relationship, then one of them will be deleted. However, which one will be deleted? For solving this problem, a sensitivity test was conducted and the higher sensitivity parameters remained. The results indicate that the original data should be preprocessed through the PCA for redundancy and variability. The study shows that introducing the PCA into the FSE can simplify the FSE calculation process greatly, while the results have not been changed much.
基金supported by the National Basic Research Program (973) of China (No.2010CB126200)China Postdoctoral Science Foundation Project (No.20090451437)
文摘Detection of crop health conditions plays an important role in making control strategies of crop disease and insect damage and gaining high-quality production at late growth stages. In this study, hyperspectral reflectance of rice panicles was measured at the visible and near-infrared regions. The panicles were divided into three groups according to health conditions: healthy panicles, empty panicles caused by Nilaparvata lugens St^l, and panicles infected with Ustilaginoidea virens. Low order derivative spectra, namely, the first and second orders, were obtained using different techniques. Principal component analysis (PCA) was performed to obtain the principal component spectra (PCS) of the foregoing derivative and raw spectra to reduce the reflectance spectral dimension. Support vector classification (SVC) was employed to discriminate the healthy, empty, and infected panicles, with the front three PCS as the in- dependent variables. The overall accuracy and kappa coefficient were used to assess the classification accuracy of SVC. The overall accuracies of SVC with PCS derived from the raw, first, and second reflectance spectra for the testing dataset were 96.55%, 99.14%, and 96.55%, and the kappa coefficients were 94.81%, 98.71%, and 94.82%, respectively. Our results demonstrated that it is feasible to use visible and near-infrared spectroscopy to discriminate health conditions of rice panicles.
文摘This paper introduces a new enhancement method for multi-spectral satellite remote sensing imagery,based on principal component analysis(PCA) and intensity-hue-saturation(IHS) transformations.The PCA and the IHS transformations are used to separate the spatial information of the multi-spectral image into the first principal component and the intensity component,respectively.The enhanced image is obtained by replacing the intensity component of the IHS transformation with the first principal component of the PCA transformation,and undertaking the inverse IHS transformation.The objective of the proposed method is to make greater use of the spatial and spectral information contained in the original multi-spectral image.On the basis of the visual and statistical analysis results of the experimental study,we can conclude that the proposed method is an ideal new way for multi-spectral image quality enhancement with little color distortion.It has potential advantages in image mapping optimization,object recognition,and weak information sharpening.
基金supported by the National Natural Science Foundation of China(71401052)the Key Project of National Social Science Fund of China(12AZD108)+2 种基金the Doctoral Fund of Ministry of Education(20120094120024)the Philosophy and Social Science Fund of Jiangsu Province Universities(2013SJD630073)the Central University Basic Service Project Fee of Hohai University(2011B09914)
文摘To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.
基金supported by the National Natural Science Fundation of China (30960189)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China,the project for Principle Research Topic of Jiangxi Education,China(GJJ08146)+3 种基金the Jiangxi Province Project for Principle Research Leader,China (020007)the Jiangxi Province Inviting Tender Project for Principle ResearchTopic,China (20068)the Natural Science Foundation of Jiangxi Province,China (2009GQN0068)the Youth Foundation of Jiangxi Academy of Agricultural Sciences,China (2010CQN008)
文摘Drought stress is one of the major constraints to rice (Oryza sativa L.) production and yield stability especially in rainfed ecosystems and is getting worse as the climate changes worldwide. Dongxiang wild rice (DXWR) Oryza rufipogon Griff., contains drought resistant gene. Improving drought resistance of cultivars is crucial to increase and stabilize rice grain yield via transferring resistant gene from species related to rice. In this paper, four upland rice, sixty backcross inbred lines (BILs) derived from BC1F5 of R974//DXWR/R974, and their parents were employed to evaluate drought-resistance at seedling stage in the greenhouse. Nine traits were recorded for assessment of drought resistance, including maximum root length (MRL), number of roots (NR), shoot length (SL), dry root weight (DRW), fresh root weight (FRW), root relative water content (RRWC), leaf relative water content (LRWC), level for rolling leaf (LRL), and seedling survivability under repeat drought (SSRD). Using more than 88% of accumulative contribution resulted from the principal component analysis (PCA), the nine traits were classified into five independent principal components and the line 1949 showed the highest resistance. Analysis on the stepwise regression equation and correlation demonstrated that MRL, RN, FRW, and RRWC significantly influenced the drought resistance, thus could be used as comprehensive index for drought resistance at the seedling stage. Using the major gene plus polygene mixed inheritance model of quantitative traits, the inheritance of drought-resistance of BIL population at seedling stage was mostly controlled by two independent genes plus polygene. As a result, the DXWR could be precious resources for genetic improvement of drought resistance in cultivated rice.
基金funded by the Na-tional Natural Science Foundation of China(Grant Nos.41672329,41272365)the National Key Research and Development Project of China(Grant No.2016YFC0600509)the Project of China Geological Survey(Grant No.1212011120341)
文摘Concentration of elements or element groups in a geological body is the result of multiple stages of rockforming and ore-forming geological processes.An ore-forming element group can be identified by PCA(principal component analysis)and be separated into two components using BEMD(bi-dimensional empirical mode decomposition):(1)a high background component which represents the ore-forming background developed in rocks through various geological processes favorable for mineralization(i.e.magmatism,sedimentation and/or metamorphism);(2)the anomaly component which reflects the oreforming anomaly that is overprinted on the high background component developed during mineralization.Anomaly components are used to identify ore-finding targets more effectively than ore-forming element groups.Three steps of data analytical procedures are described in this paper;firstly,the application of PCA to establish the ore-forming element group;secondly,using BEMD on the o re-forming element group to identify the anomaly components created by different types of mineralization processes;and finally,identifying ore-finding targets based on the anomaly components.This method is applied to the Tengchong tin-polymetallic belt to delineate ore-finding targets,where four targets for Sn(W)and three targets for Pb-Zn-Ag-Fe polymetallic mineralization are identified and defined as new areas for further prospecting.It is shown that BEMD combined with PCA can be applied not only in extracting the anomaly component for delineating the ore-finding target,but also in extracting the residual component for identifying its high background zone favorable for mineralization from its oreforming element group.
文摘This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzhou, China. First, citizens registered various items constituting desirable values of residential outdoor spaces through a preliminary questionnaire. The result proposed three general attributes (functional, aesthetic and ecological) and ten specific qualities of residential outdoor spaces. An analytic hierarchy process (AHP) was applied to an interview survey in order to clarify the weights among these attributes and qualities. Second, principal factors were extracted from the ten specific qualities with principal component analysis (PCA) for both the common case and the campus case. In addition, the variations of respondents’ groups were classified with cluster analysis (CA) using the results of the PCA. The results of the AHP application found that the public prefers the functional attribute, rather than the aesthetic attribute. The latter is always viewed as the core value of open spaces in the eyes of architects and designers. Fur-thermore, comparisons of ten specific qualities showed that the public prefers the open spaces that can be utilized conveniently and easily for group activities, because such spaces keep an active lifestyle of neighborhood communication, which is also seen to protect human-regarding residential environments. Moreover, different groups of respondents diverge largely in terms of gender, age, behavior and preference.
文摘Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11075184)the Knowledge Innovation Program of the Chinese Academy of Sciences(CAS)(Grant No.Y03RC21124)the CAS President’s International Fellowship Initiative Foundation(Grant No.2015VMA007)
文摘Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.
基金Project supported by the National Natural Science Foundation of China(Nos.91441117 and51576182)the Natural Key Program of Chizhou University(No.2016ZRZ007)
文摘The principal component analysis (PCA) is used to analyze the high dimen- sional chemistry data of laminar premixed/stratified flames under strain effects. The first few principal components (PCs) with larger contribution ratios axe chosen as the tabu- lated scalars to build the look-up chemistry table. Prior tests show that strained premixed flame structure can be well reconstructed. To highlight the physical meanings of the tabu- lated scalars in stratified flames, a modified PCA method is developed, where the mixture fraction is used to replace one of the PCs with the highest correlation coefficient. The other two tabulated scalars are then modified with the Schmidt orthogonalization. The modified tabulated scalars not only have clear physical meanings, but also contain passive scalars. The PCA method has good commonality, and can be extended for building the thermo-chemistry table including strain rate effects when different fuels are used.
文摘A new watermarking scheme using principal component analysis (PCA) is described.The proposed method inserts highly robust watermarks into still images without degrading their visual quality. Experimental results are presented, showing that the PCA based watermarks can resist malicious attacks including lowpass filtering, re scaling, and compression coding.
基金Project(217/s/458)supported by Azarbaijan Shahid Madani University,Iran
文摘A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.