期刊文献+
共找到1,486篇文章
< 1 2 75 >
每页显示 20 50 100
Characterization of novel highly pathogenic avian influenza A(H5N6)clade 2.3.4.4b virus in wild birds,East China,2024
1
作者 Renjie Sun Xiaoxiao Feng +9 位作者 Jing Huang Fangyu Zheng Ronghui Xie Chuanliang Zhang Hongli Zhang Yin Xue Aijun Liu Xiaobing Huang Lin Yuan Lingyan Zhao 《Virologica Sinica》 2025年第2期284-287,共4页
Dear Editor,The highly pathogenic avian influenza viruses(HPAIVs)are important epizootic and zoonotic pathogens that cause significant economic losses to the poultry industry and pose a serious risk to veterinary and ... Dear Editor,The highly pathogenic avian influenza viruses(HPAIVs)are important epizootic and zoonotic pathogens that cause significant economic losses to the poultry industry and pose a serious risk to veterinary and public health.Wild birds have been recognized as the primary reservoirs for influenza A virus,and some species show little sign of clinical disease or even can be asymptomatic during long distance carriers of the virus(Lycett et al.,2019).Since it was first discovered in 1959,the H5Nx HPAIVs have spread globally and cause outbreaks in wild birds,poultry and sporadic human and other mammalian infections(Lycett et al.,2019).Due to the reassortant events of diverse strains facilitated by migratory waterfowl,the clade 2.3.4.4 of H5Nx viruses acquiring neuraminidase(NA)gene from other low pathogenicity avian influenza viruses(LPAIVs)emerged in 2014 and gradually became the dominant sub-clade(Lee et al.,2017). 展开更多
关键词 wild birds highly pathogenic avian influenza East China EPIZOOTIC highly pathogenic avian influenza viruses hpaivs avian influenza H N ZOONOTIC h nx hpaivs
原文传递
Deletion of Salmonella pathogenicity islands SPI-1, 2 and 3 induces substantial morphological and metabolic alternation and protective immune potential
2
作者 Gaosong Liu Xuelian Lü +4 位作者 Qiufeng Tian Wanjiang Zhang Fei Yi Yueling Zhang Shenye Yu 《Journal of Integrative Agriculture》 2025年第1期272-289,共18页
The Salmonella pathogenicity islands(SPIs) play crucial roles in the progression of Salmonella infection. In this study, we constructed an improved λ Red homologous recombination system to prepare single and triple d... The Salmonella pathogenicity islands(SPIs) play crucial roles in the progression of Salmonella infection. In this study, we constructed an improved λ Red homologous recombination system to prepare single and triple deletion mutants of 3 prominent SPIs(SPI-1, 2, and 3), aiming at the impact of deletion on morphology, carbon source metabolism, adhesion and invasion capacity, in vivo colonization, and immune efficacy in chicks. Our examination revealed that the surface of the single deletion mutants(SM6ΔSPI1, ΔSPI2, and ΔSPI3) exhibited a more rugged texture and appeared to be enveloped in a layer of transparent colloid, whereas the morphology of the triple deletion mutant(SM6ΔSPI1&2&3) remained unaltered when compared to the parent strain. The carbon metabolic spectrum of the SPI mutants underwent profound alterations, with a notable and statistically significant modification observed in 30 out of 95 carbon sources, primarily carbohydrates(17 out of 30). Furthermore, the adhesion capacity of the 4 mutants to Caco-2 cells was significantly reduced when compared to that of the parent strain. Moreover,the invasion capacity of mutants SM6ΔSPI1 and SM6ΔSPI1&2&3 exhibited a substantial decrease, while it was enhanced to varying degrees for SM6ΔSPI3 and SM6ΔSPI2. Importantly, none of the 4 mutants induced any clinical symptoms in the chicks. However, they did transiently colonize the spleen and liver. Notably, the SM6ΔSPI1&2&3mutant was rapidly cleared from both the spleen and liver within 8 days post-infection and no notable pathological changes were observed in the organs. Additionally, when challenged, the mutants immunized groups displayed a significant increase in antibody levels and alterations in the CD3+CD4+ and CD3+CD8+ subpopulations, and the levels of IL-4 and IFN-γ cytokines in the SM6ΔSPI1&2&3 immunized chicken serum surpassed those of other groups.In summary, the successful construction of the 4 SPI mutants lays the groundwork for further exploration into the pathogenic(including metabolic) mechanisms of SPIs and the development of safe and effective live attenuated Salmonella vaccines or carriers. 展开更多
关键词 Salmonella pathogenicity islands(SPls) morphology carbon source metabolism pathogenicITY IMMUNOGENICITY live attenuated vaccine
在线阅读 下载PDF
Pathogenic genes and clinical prognosis in hypertrophic cardiomyopathy
3
作者 Ying Hong Hu-Tao Xi +2 位作者 Xin-Yi Yang Wilber W Su Xiao-Ping Li 《World Journal of Cardiology》 2025年第1期47-54,共8页
Hypertrophic cardiomyopathy(HCM)is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy.It is one of the chief causes of sudden cardiac death in younger people and athletes.Mole... Hypertrophic cardiomyopathy(HCM)is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy.It is one of the chief causes of sudden cardiac death in younger people and athletes.Molecular-genetic studies have confirmed that the vast majority of HCM is caused by mutations in genes encoding sarcomere proteins.HCM has a relatively wide phenotypic heterogeneity,varying from asymptomatic to sudden cardiac death,because of the many different mutations and pathogenic genes underlying it.Many studies have explored the clinical symptoms and prognosis of HCM,emphasizing the importance of genotype in evaluating patient prognosis and guiding the clinical management of HCM.To elaborate the main pathogenic genes and phenotypic prognosis in HCM to promote a better understanding of this genetic disease.Retrospective analysis of literature to evaluate the association between underlying gene mutations and clinical phenotypes in HCM patients.As sequencing technology advances,the pathogenic gene mutation spectrum and phenotypic characteristics of HCM are gradually becoming clearer.HCM is a widespread inherited disease with a highly variable clinical phenotype.The precise mechanisms linking known pathogenic gene mutations and the clinical course of this heterogeneous condition remain elusive. 展开更多
关键词 Hypertrophic cardiomyopathy GENOTYPE PHENOTYPE pathogenic genes PROGNOSIS
暂未订购
First Occurrence of Coffee(Coffea arabica L.)Wilt Disease Caused by Neocosmospora falciformis in Saudi Arabia as Corroborated by Molecular Characterization and Pathogenicity Test
4
作者 Ahmed Mahmoud Ismail Khalid Alhudaib Donato Magistà 《Phyton-International Journal of Experimental Botany》 2025年第3期679-693,共15页
Coffee wilt represents one of the most devastating diseases of Arabica coffee(Coffea arabica L.)plantations in the primary coffee-producing regions.In this study,coffee trees manifesting wilt symptoms accompanied by t... Coffee wilt represents one of the most devastating diseases of Arabica coffee(Coffea arabica L.)plantations in the primary coffee-producing regions.In this study,coffee trees manifesting wilt symptoms accompanied by the defoliation and drying of the whole tree were observed in the Jazan,El Baha,Najran,and Asir regions.The purpose of this investigation was to isolate and identify the Fusarium species recovered from symptomatic coffee trees.The developed fungi were initially characterized based on their morphological features followed by molecular phylogenetic multi-locus analysis of the combined sequences of ITS,TEF1-α,RPB2,and CaM.Twenty-five isolates were recovered from 28 samples.All fungal isolates were categorized morphologically under the genus Fusarium.Phylogenetic analysis positioned all the representative 15 isolates into one cluster grouping together with Neocosmospora falciformis(formerly F.falciforme)confirming their taxonomic position.Pathogenicity tests of the N.falciformis isolates were subsequently conducted on coffee seedlings,and the results revealed that all isolates induced wilt symptoms resembling those recorded in the field,and the incidence was 100%.The fungicide sensitivity test of seven investigated fungicides revealed that Maxim XL^(®) followed by Moncut^(®) exhibited the highest inhibitory effect against N.falciformis KSA 24-14,reaching 93.33%and 91.67%,respectively.To our knowledge,N.falciformis is a new causal pathogen of coffee wilt in Saudi Arabia.Remarkably,these results offer important insights for devising effective approaches to monitor and control such diseases. 展开更多
关键词 COFFEE wilt disease morphology Neocosmospora pathogenicITY PHYLOGENETIC
在线阅读 下载PDF
Acidic environment favors the development and pathogenicity of the grape white rot fungus Coniella vitis
5
作者 Lifang Yuan Hang Jiang +4 位作者 Qibao Liu Xilong Jiang Yanfeng Wei Xiangtian Yin Tinggang Li 《Journal of Integrative Agriculture》 2025年第7期2686-2703,共18页
Grape white rot caused by Coniella vitis is a global concern in the grape industry.pH regulation is essential for cell growth,reproductive processes and pathogenicity in phytopathogenic fungi.In this study,we observed... Grape white rot caused by Coniella vitis is a global concern in the grape industry.pH regulation is essential for cell growth,reproductive processes and pathogenicity in phytopathogenic fungi.In this study,we observed that the growth rate,spore production and virulence of C.vitis significantly declined in alkaline pH,as well as the suppressive effect on secretion of hydrolytic enzymes.Transcriptomic and metabolomic analyses were used to investigate the responses of C.vitis to acidic(pH 5),neutral(pH 7)and alkaline environments(pH 9).We identified 728,1,780 and 3,386 differentially expressed genes(DEGs)at pH 5,pH 7 and pH 9,when compared with the host pH(pH 3),and 2,122 differently expressed metabolites(DEMs)in negative and positive ion mode.Most DEGs were involved in carbohydrate metabolic process,transmembrane transport,tricarboxylic acid cycle,peptide metabolic process,amide biosynthetic process,and organic acid metabolic process.In addition,metabolomic analysis revealed ABC transporters,indole alkaloid biosynthesis,diterpenoid biosynthesis,and carotenoid biosynthesis pathways in response to the pH change.Furthermore,we found that the aspartate synthesis metabolic route associated with the TCA cycle is a key limiting factor for the growth and development of C.vitis in alkaline environments,and aspartate supplementation enables C.vitis to grow in alkaline environments.Plant cell wall-degrading enzymes(PCWDEs)could contribute to the pathogenicity,when C.vitis infected at pH 3.Importantly,aflatrem biosynthesis in acidic environment might contribute to the virulence of C.vitis and has a risk of causing human health problems due to its acute neurotoxic effects. 展开更多
关键词 grape white rot ambient pH growth pathogenicITY TRANSCRIPTOMIC METABOLOME
在线阅读 下载PDF
The N-mannosyltransferase MoAlg9 plays important roles in the development and pathogenicity of Magnaporthe oryzae
6
作者 Shulin Zhang Yu Wang +4 位作者 Jinmei Hu Xinyue Cui Xiaoru Kang Wei Zhao Yuemin Pan 《Journal of Integrative Agriculture》 2025年第6期2266-2284,共19页
Magnaporthe oryzae is the causal agent of rice blast. Glycosylation plays key roles in vegetative growth,development, and infection of M. oryzae. However, several glycosylation-related genes have not been characterize... Magnaporthe oryzae is the causal agent of rice blast. Glycosylation plays key roles in vegetative growth,development, and infection of M. oryzae. However, several glycosylation-related genes have not been characterized.In this study, we identified a Glyco_transf_22 domain-containing protein, MoAlg9, and found that MoAlg9 islocalized to the endoplasmic reticulum(ER). Deletion of MoALG9 significantly affected conidial production, normalappressorium formation, responses to stressors, and pathogenicity of M. oryzae. We also found that the ΔMoalg9mutant was defective in glycogen utilization, appressorial penetration, and invasive growth in host cells. Moreover,we further demonstrated that MoALG9 regulates the transcription of several target genes involved in conidiation,appressorium formation, and cell wall integrity. In addition, we found that the Glyco_transf_22 domain is essentialfor normal MoAlg9 function and localization. We also provide evidence that MoAlg9 is involved in N-glycosylationpathway in M. oryzae. Taken together, these results show that MoAlg9 is important for conidiation, appressoriumformation, maintenance of cell wall integrity, and the pathogenesis of M. oryzae. 展开更多
关键词 GLYCOSYLATION N-mannosyltransferase Alg9 pathogenicITY rice blast Magnaporthe oryzae
在线阅读 下载PDF
Comparison of the pathogenicity of multiple SARS-CoV-2 variants in mouse models
7
作者 Qi Lv Ming Liu +10 位作者 Feifei Qi Mingya Liu Fengdi Li Ran Deng Xujian Liang Yanfeng Xu Zhiqi Song Yiwei Yan Shuyue Li Guocui Mou Linlin Bao 《Animal Models and Experimental Medicine》 2025年第7期1302-1312,共11页
Background:New variants of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)continue to drive global epidemics and pose significant health risks.The pathogenicity of these variants evolves under immune press... Background:New variants of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)continue to drive global epidemics and pose significant health risks.The pathogenicity of these variants evolves under immune pressure and host factors.Understanding these changes is crucial for epidemic control and variant research.Methods:Human angiotensin-converting enzyme 2(hACE2)transgenic mice were in-tranasally challenged with the original strain WH-09 and the variants Delta,Beta,and Omicron BA.1,while BALB/c mice were challenged with Omicron subvariants BA.5,BF.7,and XBB.1.To compare the pathogenicity differences among variants,we con-ducted a comprehensive analysis that included clinical symptom observation,meas-urement of viral loads in the trachea and lungs,evaluation of pulmonary pathology,analysis of immune cell infiltration,and quantification of cytokine levels.Results:In hACE2 mice,the Beta variant caused significant weight loss,severe lung inflammation,increased inflammatory and chemotactic factor secretion,greater mac-rophage and neutrophil infiltration in the lungs,and higher viral loads with prolonged shedding duration.In contrast,BA.1 showed a significant reduction in pathogenicity.The BA.5,BF.7,and XBB.1 variants were less pathogenic than the WH-09,Beta,and Delta variants when infected in BALB/c mice.This was evidenced by reduced weight loss,diminished pulmonary pathology,decreased secretion of inflammatory factors and chemokines,reduced macrophage and neutrophil infiltration,as well as lower viral loads in both the trachea and lungs.Conclusion:In hACE2 mice,the Omicron variant demonstrated the lowest pathogenic-ity,while the Beta variant exhibited the highest.Pathogenicity of the Delta variant was comparable to the original WH-09 strain.Among BALB/c mice,Omicron subvari-ants BA.5,BF.7,and XBB.1 showed no statistically significant differences in virulence. 展开更多
关键词 mice model pathogenicITY SARS-CoV-2 VARIANTS
暂未订购
Endoplasmic reticulum stress responses in Candida:mechanisms of pathogenicity and antifungal resistance
8
作者 Qiu-Ying Chen Sheng-Qi Jia +2 位作者 Yu-Lan Zeng Zhi-Lin Zeng Lan-Yue Pan 《Infectious Diseases Research》 2025年第3期23-30,共8页
In Candida species,the endoplasmic reticulum(ER)stress response—regulated by the unfolded protein response(UPR)—serves as a critical adaptive mechanism affecting both pathogenicity and antifungal resistance.This rev... In Candida species,the endoplasmic reticulum(ER)stress response—regulated by the unfolded protein response(UPR)—serves as a critical adaptive mechanism affecting both pathogenicity and antifungal resistance.This review aims to synthesize current knowledge on ER stress pathways in Candida glabrata and Candida albicans,highlighting their species-specific adaptations and therapeutic implications.We systematically analyzed peer-reviewed literature on ER stress mechanisms in Candida,focusing on comparative studies of UPR signaling.Emphasis was placed on C.glabrata’s inositol-requiring enzyme 1(IRE1)-dependent Regulated IRE1-Dependent Decay(RIDD)pathway and C.albicans’IRE1/HAC1 and calcium-mediated pathways.Connections to virulence and drug resistance were evaluated through genetic,transcriptomic,and phenotypic evidence.Candida species employ divergent UPR strategies:C.glabrata mitigates ER stress primarily via RIDD-mediated mRNA decay to reduce protein load,while C.albicans enhances folding capacity through HAC1 splicing and calcium homeostasis.These adaptations promote survival in hostile host environments(e.g.,oxidative stress,immune attacks)and are linked to resistance against azoles and echinocandins.Pharmacological disruption of UPR components(e.g.,IRE1 inhibitors)sensitizes Candida to antifungals in experimental models.ER stress response pathways are promising targets for antifungal drug development.Understanding species-specific UPR mechanisms in Candida could guide novel therapies to overcome resistance and improve treatment outcomes. 展开更多
关键词 endoplasmic reticulum stress unfolded protein response Candida glabrata Candida albicans antifungal resistance pathogenicITY
暂未订购
The virulence regulator AbsR in avian pathogenic Escherichia coli has pleiotropic effects on bacterial physiology
9
作者 Dongfang Zhao Haobo Zhang +4 位作者 Xinyang Zhang Fengwei Jiang Yijing Li Wentong Cai Ganwu Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期649-668,共20页
Avian pathogenic Escherichia coli(APEC)belonging to extraintestinal pathogenic E.coli(ExPEC)can cause severe infections in extraintestinal tissues in birds and humans,such as the lungs and blood.MprA(microcin producti... Avian pathogenic Escherichia coli(APEC)belonging to extraintestinal pathogenic E.coli(ExPEC)can cause severe infections in extraintestinal tissues in birds and humans,such as the lungs and blood.MprA(microcin production regulation,locus A,herein renamed AbsR,a blood survival regulator),a member of the MarR(multiple antibiotic resistance regulator)transcriptional regulator family,governs the expression of capsule biosynthetic genes in human ExPEC and represents a promising druggable target for antimicrobials.However,a deep understanding of the AbsR regulatory mechanism as well as its regulon is lacking.In this study,we present a systems-level analysis of the APEC AbsR regulon using ChIP-Seq(chromatin immunoprecipitation sequencing)and RNA-Seq(RNA sequencing)methods.We found that AbsR directly regulates 99 genes and indirectly regulates 667 genes.Furthermore,we showed that:1)AbsR contributes to antiphagocytotic effects by macrophages and virulence in a mouse model for systemic infection by directly activating the capsular gene cluster;2)AbsR positively impacts biofilm formation via direct regulation of the T2SS(type II secretion system)but plays a marginal role in virulence;and 3)AbsR directly upregulates the acid tolerance signaling system EvgAS to withstand acid stress but is dispensable in ExPEC virulence.Finally,our data indicate that the role of AbsR in virulence gene regulation is relatively conserved in ExPEC strains.Altogether,this study provides a comprehensive analysis of the AbsR regulon and regulatory mechanism,and our data suggest that AbsR likely influences virulence primarily through the control of capsule production.Interestingly,we found that AbsR severely represses the expression of the type I-F CRISPR(clustered regularly interspaced short palindromic repeats)-Cas(CRISPR associated)systems,which could have implications in CRISPR biology and application. 展开更多
关键词 avian pathogenic Escherichia coli(APEC) extraintestinal pathogenic Escherichia coli(ExPEC) AbsR RNA-SEQ CHIP-SEQ gene regulation
在线阅读 下载PDF
Evolutionary dynamics and comparative pathogenicity of clade 2.3.4.4b H5 subtype avian influenza viruses,China,2021–2022 被引量:4
10
作者 Siru Lin Junhong Chen +10 位作者 Ke Li Yang Liu Siyuan Fu Shumin Xie Aimin Zha Aiguo Xin Xinyu Han Yuting Shi Lingyu Xu Ming Liao Weixin Jia 《Virologica Sinica》 SCIE CAS CSCD 2024年第3期358-368,共11页
The recent concurrent emergence of H5N1,H5N6,and H5N8 avian influenza viruses(AIVs)has led to significant avian mortality globally.Since 2020,frequent human-animal interactions have been documented.To gain insight int... The recent concurrent emergence of H5N1,H5N6,and H5N8 avian influenza viruses(AIVs)has led to significant avian mortality globally.Since 2020,frequent human-animal interactions have been documented.To gain insight into the novel H5 subtype AIVs(i.e.,H5N1,H5N6 and H5N8),we collected 6102 samples from various regions of China between January 2021 and September 2022,and identified 41 H5Nx strains.Comparative analyses on the evolution and biological properties of these isolates were conducted.Phylogenetic analysis revealed that the 41 H5Nx strains belonged to clade 2.3.4.4b,with 13 related to H5N1,19 to H5N6,and 9 to H5N8.Analysis based on global 2.3.4.4b viruses showed that all the viruses described in this study were likely originated from H5N8,exhibiting a heterogeneous evolutionary history between H5N1 and H5N6 during 2015–2022 worldwide.H5N1 showed a higher rate of evolution in 2021–2022 and more sites under positive selection pressure in 2015–2022.The antigenic profiles of the novel H5N1 and H5N6 exhibited notable variations.Further hemagglutination inhibition assay suggested that some A(H5N1)viruses may be antigenically distinct from the circulating H5N6 and H5N8 strains.Mammalian challenge assays demonstrated that the H5N8 virus(21GD001_H5N8)displayed the highest pathogenicity in mice,followed by the H5N1 virus(B1557_H5N1)and then the H5N6 virus(220086_H5N6),suggesting a heterogeneous virulence profile of H5 AIVs in the mammalian hosts.Based on the above results,we speculate that A(H5N1)viruses have a higher risk of emergence in the future.Collectively,these findings unveil a new landscape of different evolutionary history and biological characteristics of novel H5 AIVs in clade 2.3.4.4b,contributing to a better understanding of designing more effective strategies for the prevention and control of novel H5 AIVs. 展开更多
关键词 Avian influenza virus(AIV) H5 subtypes AIVs EVOLUTIONARY pathogenicITY
原文传递
Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria:Current state of the art 被引量:2
11
作者 Karolina Zuchowska Wojciech Filipiak 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期483-505,共23页
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr... Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity. 展开更多
关键词 Volatile organic compounds pathogenic bacteria metabolites Metabolomics Microextraction techniques Gas chromatography-mass spectrometry In vivo breath analysis In vitro model
暂未订购
SsdchA is a novel secretory cellobiohydrolase driving pathogenicity in Sclerotinia sclerotiorum 被引量:2
12
作者 Yangui Chen Yijuan Ding +8 位作者 Siqi Zhao Nan Yang Zhaohui Wu Ping Zhang Hongmei Liao Mengquan Dong Yang Yu Huafang Wan Wei Qian 《The Crop Journal》 SCIE CSCD 2024年第2期493-502,共10页
The necrotrophic fungus, Sclerotinia sclerotiorum, employs an array of cell wall-degrading enzymes(CWDEs), including cellulase, to dismantle host cell walls. However, the molecular mechanisms through which S. scleroti... The necrotrophic fungus, Sclerotinia sclerotiorum, employs an array of cell wall-degrading enzymes(CWDEs), including cellulase, to dismantle host cell walls. However, the molecular mechanisms through which S. sclerotiorum degrades cellulose remain elusive. Here, we unveil a novel secretory cellobiohydrolase, SsdchA, characterized by a signal peptide and a Glyco_hydro_7(GH7) domain. SsdchA exhibits a robust expression of during early infection stages. Interestingly, colony morphology and growth rates remain unaffected across the wild-type, SsdchA deletion strains and SsdchA overexpression strains on potato dextrose agar(PDA) medium. Nevertheless, the pathogenicity and cellobiohydrolase activity decreased in the SsdchA deletion strains, but enhanced in the SsdchA overexpression strains. Moreover,the heterologous expression of SsdchA in Arabidopsis thaliana leads to reduced cellulose content and heightened susceptibility to S. sclerotiorum. Collectively, our data underscore the pivotal role of the novel cellobiohydrolase SsdchA in the pathogenicity of S. sclerotiorum. 展开更多
关键词 CELLOBIOHYDROLASE CELLULOSE pathogenicITY Sclerotinia sclerotiorum Secretory protein SsdchA
在线阅读 下载PDF
Autophagy-related protein PlAtg3 participates in vegetative growth,sporangial cleavage,autophagy and pathogenicity of Peronophythora litchii 被引量:2
13
作者 Chengdong Yang Manfei Luo +8 位作者 Xue Zhang Linlin Ye Ge Yu Yi Lü Yi Chen Taixu Chen Xuejian Wang Wanzhen Feng Qinghe Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第11期3788-3800,共13页
Litchi downy blight,caused by the plant pathogenic oomycete Peronophythora litchii,is one of the most devastating diseases on litchi and resulted in huge economic losses.Autophagy plays an essential role in the develo... Litchi downy blight,caused by the plant pathogenic oomycete Peronophythora litchii,is one of the most devastating diseases on litchi and resulted in huge economic losses.Autophagy plays an essential role in the development and pathogenicity of the filamentous fungi.However,the function of autophagy in oomycetes remain elusive.Here,an autophagy-related protein Atg3 homolog PlAtg3 was identified and characterized in P.litchii.The absence of PlATG3 through the CRISPR/Cas9 gene replacement strategy compromised vegetative growth and sexual/asexual development.Cytological analyses revealed that the deletion of PlATG3 impaired autophagosome formation with monodansylcadaverine(MDC)staining and significantly disrupted zoospore release due to defects of sporangial cleavage with FM4-64 staining.Atg8 is considered to be an autophagy marker protein in various species.Western blot analysis indicated that PlAtg3 is involved in degradation of PlAtg8-PE.Interestingly,PlAtg3 was unable to interact with PlAtg8 in yeast two hybrid(Y2H)assays,possibly due to the absence of the Atg8 family interacting motif(AIM)in PlAtg3.Furthermore,pathogenicity assays revealed that the deletion of PlATG3 considerably reduced the virulence of P.litchii.Taken together,our data reveal that PlAtg3 plays an important role in radial growth,asexual/sexual development,sporangial cleavage and zoospore release,autophagosome formation,and pathogenicity in P.litchii.This study contributes to a better understanding of the pathogenicity mechanisms of P.litchii and provides insights for the development of more effective strategies to control oomycete diseases. 展开更多
关键词 PlAtg3 sporangial cleavage AUTOPHAGY pathogenicITY Peronophythora litchii
在线阅读 下载PDF
Control of highly pathogenic avian influenza through vaccination 被引量:1
14
作者 Xianying Zeng Jianzhong Shi Hualan Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1447-1453,共7页
The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian in... The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian influenza virus in vaccinated birds would evolve more rapidly and pose a greater risk to humans.In this review,we summarize the successes in controlling highly pathogenic avian influenza in China and make suggestions regarding the requirements for vaccine selection and effectiveness.In addition,we present evidence that vaccination of poultry not only eliminates human infection with avian influenza virus,but also significantly reduces and abolishes some harmful characteristics of avian influenza virus. 展开更多
关键词 avian influenza CONTROL highly pathogenic VACCINATION
在线阅读 下载PDF
Distribution of pathogenic bacteria and antimicrobial sensitivity of eye infections in Suzhou 被引量:1
15
作者 Li Zhang Hai-Zhang You +4 位作者 Guo-Hui Wang Wei Xu Jian-Shan Li Qing-Liang Zhao Shu Du 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第4期700-706,共7页
AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collecte... AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections. 展开更多
关键词 eye infection pathogenic bacteria drug resistance antimicrobial sensitivity test
原文传递
A Single-Cell Landscape of Human Liver Transplantation Reveals a Pathogenic Immune Niche Associated with Early Allograft Dysfunction
16
作者 Xin Shao Zheng Wang +8 位作者 Kai Wang Xiaoyan Lu Ping Zhang Rongfang Guo Jie Liao Penghui Yang Shusen Zheng Xiao Xu Xiaohui Fan 《Engineering》 SCIE EI CAS CSCD 2024年第5期193-208,共16页
Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical... Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical concern,exacerbating the current organ shortage and detrimentally affecting the prognosis of recipients.Unfortunately,the perplexing hepatic heterogeneity has impeded characterization of the cellular traits and molecular events that contribute to EAD.Herein,we constructed a pioneering single-cell transcriptomic landscape of human transplanted livers derived from non-EAD and EAD patients,with 12 liver samples collected from 7 donors during the cold perfusion and portal reperfusion stages.Comparison of the 75231 cells of non-EAD and EAD patients revealed an EAD-associated immune niche comprising mucosal-associated invariant T cells,granzyme B^(+)(GZMB^(+))granzyme K^(+)(GZMK^(+))natural killer cells,and S100 calcium binding protein A12^(+)(S100A12^(+))neutrophils.Moreover,we verified this immune niche and its association with EAD occurrence in two independent cohorts.Our findings elucidate the cellular characteristics of transplanted livers and the EAD-associated pathogenic immune niche at the single-cell level,thus,offering valuable insights into EAD onset. 展开更多
关键词 Human liver transplantation Early allograft dysfunction pathogenic immune niche Single-cell analysis Cell-cell communication
暂未订购
RDH12-associated retinal degeneration caused by a homozygous pathogenic variant of 146C>T and literature review
17
作者 Jin Li Yi-Qun Hu +4 位作者 Hong-Bo Cheng Ting Wang Long-Hao Kuang Tao Huang Xiao-He Yan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期311-316,共6页
AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.MET... AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.METHODS:The patient underwent a complete ophthalmologic examination including best-corrected visual acuity,anterior segment and dilated fundus,visual field,spectral-domain optical coherence tomography(OCT)and electroretinogram(ERG).The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result.Then we reviewed the characteristics of the patients reported with the same variant.RESULTS:A 30-year male presented with severe early retinal degeneration who complained night blindness,decreased visual acuity,vitreous floaters and amaurosis fugax.The best corrected vision was 0.04 OD and 0.12 OS,respectively.The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye.Autofluorescence shows bilateral symmetrical hypo-autofluorescence.ERG revealed that the amplitudes of a-and b-wave were severely decreased.Multifocal ERG showed decreased amplitudes in the local macular area.A homozygous missense variant c.146C>T(chr14:68191267)was found.The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied.CONCLUSION:An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported.The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease. 展开更多
关键词 RDH12 gene inherited retinal degeneration homozygous pathogenic variant clinical feature multi-mode imaging
原文传递
The DNA damage repair complex MoMMS21-MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae
18
作者 Yue Jiang Rong Wang +8 位作者 Lili Du Xueyu Wang Xi Zhang Pengfei Qi Qianfei Wu Baoyi Peng Zonghua Wang Mo Wang Ya Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1956-1966,共11页
The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic ... The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic fungi,particularly in the highly destructive rice blast fungus Magnaporthe oryzae,remains unknown.In this study,we functionally characterized the homologues of this complex,MoMMS21 and MoSMC5,in M.oryzae.We first demonstrated the importance of DNA damage repair in M.oryzae by showing that the DNA damage inducer phleomycin inhibited vegetative growth,infection-related development and pathogenicity in this fungus.Additionally,we discovered that MoMMS21 and MoSMC5 interacted in the nuclei,suggesting that they also function as a complex in M.oryzae.Gene deletion experiments revealed that both MoMMS21 and MoSMC5 are required for infection-related development and pathogenicity in M.oryzae,while only MoMMS21 deletion affected growth and sensitivity to phleomycin,indicating its specific involvement in DNA damage repair.Overall,our results provide insights into the roles of MoMMS21 and MoSMC5 in M.oryzae,highlighting their functions beyond DNA damage repair. 展开更多
关键词 Magnaporthe oryzae MMS21 SMC5 DNA damage repair pathogenicITY
在线阅读 下载PDF
Identification and characterization of FpRco1 in regulating vegetative growth and pathogenicity based on T-DNA insertion in Fusarium pseudograminearum
19
作者 Haiyang Li Yuan Zhang +18 位作者 Cancan Qin Zhifang Wang Lingjun Hao Panpan Zhang Yongqiang Yuan Chaopu Ding Mengxuan Wang Feifei Zan Jiaxing Meng Xunyu Zhuang Zheran Liu Limin Wang Haifeng Zhou Linlin Chen Min Wang Xiaoping Xing Hongxia Yuan Honglian Li Shengli Ding 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3055-3065,共11页
Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F.... Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F.pseudograminearum infects wheat remains unclear.In this study,we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of F.pseudograminearum.By screening this mutant library,we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.Among these mutants,one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1,encoding essential component of the Rpd3S histone deacetylase complex in F.pseudograminearum.To further investigate the role of FpRCO1 in F.pseudograminearum,we employed a split-marker approach to knock out FpRCO1 in F.pseudograminearum WZ-8A.FpRCO1 deletion mutants exhibit reduced vegetative growth,conidium production,and virulence in wheat coleoptiles and barley leaves,whereas the complementary strain restores these phenotypes.Moreover,under stress conditions,the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl,sorbitol,and SDS,but possessed reduced sensitivity to H_(2)O_(2)compared to these characteristics in the wild-type strain.RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression(particularly the downregulation of TRI gene expression),thus resulting in significantly reduced deoxynivalenol(DON)production.In summary,our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development,asexual reproduction,DON production,and pathogenicity of F.pseudograminearum.This study provides valuable insights into the molecular mechanisms underlying F.pseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease. 展开更多
关键词 Fusarium pseudograminearum T-DNA insertion Rpd3S complex FpRCO1 pathogenicITY DON production
在线阅读 下载PDF
Genetic and pathogenic characterization of new infectious bronchitis virus strains in the GVI-1 and GI-19 lineages isolated in central China
20
作者 Yuhan Yang Dou Wang +13 位作者 Yaning Bai Wenyan Huang Shimin Gao Xingchen Wu Ying Wang Jianle Ren Jinxin He Lin Jin Mingming Hu Zhiwei Wang Zhongbing Wang Haili Ma Junping Li Libin Liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2407-2420,共14页
Avian infectious bronchitis(IB)is a highly contagious infectious disease caused by infectious bronchitis virus(IBV),which is prevalent in many countries worldwide and causes serious harm to the poultry industry.At pre... Avian infectious bronchitis(IB)is a highly contagious infectious disease caused by infectious bronchitis virus(IBV),which is prevalent in many countries worldwide and causes serious harm to the poultry industry.At present,many commercial IBV vaccines have been used for the prevention and control of IB;however,IB outbreaks occur frequently.In this study,two new strains of IBV,SX/2106 and SX/2204,were isolated from two flocks which were immunized with IBV H120 vaccine in central China.Phylogenetic and recombination analysis indicated that SX/2106,which was clustered into the GI-19 lineage,may be derived from recombination events of the GI-19 and GI-7 strains and the LDT3-A vaccine.Genetic analysis showed that SX/2204 belongs to the GVI-1 lineage,which may have originated from the recombination of the GI-13 and GVI-1 strains and the H120 vaccine.The virus cross-neutralization test showed that the antigenicity of SX/2106 and SX/2204 was different from H120.Animal experiments found that both SX/2106 and SX/2204 could replicate effectively in the lungs and kidneys of chickens and cause disease and death,and H120 immunization could not provide effective protection against the two IBV isolates.It is noteworthy that the pathogenicity of SX/2204 has significantly increased compared to the GVI-1 strains isolated previously,with a mortality rate up to 60%.Considering the continuous mutation and recombination of the IBV genome to produce new variant strains,it is important to continuously monitor epidemic strains and develop new vaccines for the prevention and control of IBV epidemics. 展开更多
关键词 infectious bronchitis virus GI-19 lineage GVI-1 lineage complete genome recombination pathogenicITY
在线阅读 下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部