The modification of the perovskite surface using functional additives is one of the most promising strategies to reduce nonradiative recombination and improve the stability of perovskite solar cells(PSCs).In this work...The modification of the perovskite surface using functional additives is one of the most promising strategies to reduce nonradiative recombination and improve the stability of perovskite solar cells(PSCs).In this work,a novel quaternary pyridinium-based halide salt,1-ethyl-4-(methoxycarbonyl)pyridinium iodide(EMCP-I),is introduced as an effective post-treatment molecule to improve the quality of the perovskite film.EMCP-I exhibits dual functionality to passivate both negatively and positively charged defects and improve the film morphology.Furthermore,the treatment fine-tunes energy level alignment between the perovskite layer and the hole transport layer(HTL),facilitating more efficient charge transport.Consequently,EMCP-I-treated devices achieve a remarkable power conversion efficiency(PCE)improvement from 20.5% to 22.6%,driven primarily by an enhanced open-circuit voltage(VOC).Beyond efficiency gains,the treatment significantly enhances the environmental and operational stabilities of solar cells.This work provides a guide for tailoring quaternary pyridinium-based molecules for simultaneous improvement of the efficiency and stability of PSCs.展开更多
Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,a...Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,and the anode utilization rate is low.In this work,reduced graphene oxide(RGO)fabricated via high-temperature annealing or L-ascorbic acid(L.AA)reduction was first used to obtain Si nanowires/RGO-1000(Si NWs/RGO-1000)and Si nanowires/RGO-L.AA(Si NWs/RGO-L.AA)composite anodes for SABs.It was found that RGO suppressed the passivation and self-corrosion reactions and that SABs using Si NWs/RGO-L.AA as the anode can discharge for more than 700 h,breaking the previous performance of SABs,and that the specific capacity was increased by 90.8%compared to bare Si.This work provides a new solution for the design of high specific capacity SABs with nanostructures and anode protective layers.展开更多
Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the...Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the wafer.These traps can degrade the device stability and cause an excessively high threshold voltage.Surface passivation is regarded as an effective method to mitigate these impacts.In this study,we perform low-thermal-budget chemical passivation using the nitric acid oxidation of silicon method on the surface of strained germanium devices and investigate the impact of passivation on the device stability.The results demonstrate that surface passivation effectively reduces the interface defect density.This not only improves the stability of the device's threshold voltage but also enhances its long-term static stability.Furthermore,we construct a band diagram of hole surface tunneling at the static operating point to gain a deeper understanding of the physical mechanism through which passivation affects the device stability.This study provides valuable insights for future optimization of strained Ge-based quantum devices and advances our understanding of how interface states affect device stability.展开更多
The precipitation behavior,corrosion,and passivation performance of solutionized and severely sensitized SAF 2507 super-duplex stainless steel subjected to a temperature of 900℃for 10 h are investigated in a twofold ...The precipitation behavior,corrosion,and passivation performance of solutionized and severely sensitized SAF 2507 super-duplex stainless steel subjected to a temperature of 900℃for 10 h are investigated in a twofold concentrated seawater at 60℃.The sensitized alloy exhibits 66.1%γphases and 33.9%σphases,and the originalαphases have completely decomposed through eutectoid transformation,resulting in a microstructure characterized by coarse blockyσ/γ2 aggregates.High defect densities and an increased amount of oxyhydroxides and hydroxides are present in the passive film on the sensitized alloy,thereby enhancing n-type semiconducting character.The inferior performance of the passive film on the sensitized alloy is ascribed to the increased potential drop across the film/solution interface,the high defect densities,and the pronounced n-type character of the passive film resulting from the variations in its constituents.The precipitation ofσphase during sensitization significantly increases intergranular corrosion susceptibility and decreases critical pitting temperature,breakdown potential,and polarization resistance in hot concentrated seawater.展开更多
Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is...Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is attributed to the instability of Sn^(2+),which easily oxidizes to Sn^(4+),creating Sn vacancies and increasing the open-circuit voltage loss.In this work,we implemented tin thiocyanate(Sn(SCN)_(2))as an additive for passivating the bulk defects of a germanium-doped tin halide perovskite film.Adding Sn^(2+)and SCN-ions reduces the Sn and iodine vacancies,limiting non-radiative recombination and favoring longer charge-carrier dynamics.Moreover,the addition of Sn(SCN)_(2) induces a higher film crystallinity and preferential orientation of the(l00)planes parallel to the substrate.The passivated devices showed improved photovoltaic parameters with the best open-circuit voltage of 0.716 V and the best efficiency of 12.22%,compared to 0.647 V and 10.2%for the reference device.In addition,the passivated solar cell retains 88.7%of its initial efficiency after 80 min of illumination under 100 mW cm^(-2) and is substantially better than the control device,which reaches 82.6%of its initial power conversion efficiency only after 30 min.This work demonstrates the passivation potential of tin-based additives,which combined with different counterions give a relatively large space of choices for passivation of Sn-based perovskites.展开更多
The stacking of multiple defect-rich grain boundaries(GBs)along the long transportation path(~3μm)of charge carriers in printable mesoscopic perovskite solar cells(p-MPSCs)impedes their power conversion efficiency(PC...The stacking of multiple defect-rich grain boundaries(GBs)along the long transportation path(~3μm)of charge carriers in printable mesoscopic perovskite solar cells(p-MPSCs)impedes their power conversion efficiency(PCE).Organic Lewis bases are widely utilized for defect passivation at GBs,but how their passivation efficiency affects energy loss remains unclear.Here we employed triphenylphosphine(TPP)and triphenylphosphine oxide(TPPO)as the model passivators in p-MPSCs.TPPO has a more negatively charged center than TPP,which enables its stronger coordination with one of the most common and detrimental defects at the GBs—undercoordinated lead.When added into the perovskite with the same ratio,TPPO passivates defects more significantly and thus less TPPO remaining inactive compared with TPP.Inactive organic passivators accumulated at the GBs could impose barriers to charge carrier transportation.Indeed,TPPO improves the device performance more significantly with a champion PCE of 20.54%achieved.Besides,the TPPO devices demonstrate excellent stability with 95%of initial PCE remaining after 600 h of maximum power point tracking at(55±5)℃.展开更多
Defects at the grain boundaries(GBs)of perovskite film highly restrict both the efficiency and stability of perovskite solar cells(PSCs).Herein,organic small molecules of butanedioic acid(BA)and acetylenedicarboxylic ...Defects at the grain boundaries(GBs)of perovskite film highly restrict both the efficiency and stability of perovskite solar cells(PSCs).Herein,organic small molecules of butanedioic acid(BA)and acetylenedicarboxylic acid(AA),containing two carbonyl(C=O)groups and different core-units,were incorporated into perovskite as additives for PSCs application.Thanks to the strong coordination interaction between C=O group and under-coordinated Pb^(2+),the additives can effectively passivate film defects and regulate the perovskite crystallization,yielding high-quality perovskite films with lower defect densities.More importantly,the additives can efficiently regulate the charge transport behaviors in PSCs.Benefiting from the defects passivation and the regulation of charge carrier dynamics,the BA and AA-treaded PSCs show the power conversion efficiencies of 21.52%and 20.50%,which are higher than that of the control device(19.41%).Besides,the optimal devices exhibit a remarkable enhanced long-term stability and moisture tolerance compared to the pristine devices.Furthermore,the transient absorption spectrum reveals the mechanism of enhanced photovoltaic performances,attributing to the improvement of charge transport capability at the perovskite/Spiro-OMeTAD interfaces.This work affords a promising strategy to improve the efficiency and stability of PSCs through regulating the charge-carrier dynamic process in perovskite film.展开更多
Aqueous zinc batteries offer significant potential for large-scale energy storage,wearable devices,and medium-to low-speed transportation due to their safety,affordability,and environmental friendliness.However,the un...Aqueous zinc batteries offer significant potential for large-scale energy storage,wearable devices,and medium-to low-speed transportation due to their safety,affordability,and environmental friendliness.However,the uneven zinc deposition at the anode side caused by localized reaction activity from the passivation layer presents challenges that significantly impact the battery's stability and lifespan.In this study,we have proposed an expandable and maneuverable gel sustained-release(GSR)treatment to polish the Zn metal,which in situ converts its native passivation layer into a composite interphase layer with nanocrystal zinc phosphate and flexible polyvinyl alcohol.Such a thin and uniform interface contributes to fast and homogeneous Zn ion transport and improved anti-corrosion ability,enabling uniform zinc deposition without dendrite growth and thereby improving the battery performance with high-rate ability and long cycle life.This GSR treatment method,characterized by its simplicity,low cost,and universality,facilitates the widespread application of aqueous zinc batteries.展开更多
The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enh...The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enhancement of CZTSSe devices.Although the incorporation of Ag in CZTSSe can effectively suppress the SnZn-related defects and significantly improve the resulting cell performance,an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution.Herein,this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress SnZn defects for achieving efficient CZTSSe devices.In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution.Importantly,the C=O and O-H functional groups induced by hydrogen incorporation,serving as an electron donor,can interact with under-coordinated cations in CZTSSe material,effectively passivating the SnZn-related defects.Consequently,the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination,prolongs minority carrier lifetime,and thus yields a champion efficiency of 14.74%,showing its promising application in kesterite-based CZTSSe devices.展开更多
Highly crystalline perovskite absorbers with low defect-state densities minimizing nonradiative recombination losses are a critical prerequisite for fabricating state-of-the-art photovoltaics.Here,we use a tartaric ac...Highly crystalline perovskite absorbers with low defect-state densities minimizing nonradiative recombination losses are a critical prerequisite for fabricating state-of-the-art photovoltaics.Here,we use a tartaric acid(TA)molecule with two carboxyl and two hydroxyl groups as an additive to improve the performance and stability of the device simultaneously.The strong carboxyl-Pb2+coordination slows nucleation kinetics and passivates Pb-related traps,whereas hydroxyl-I-hydrogen bonding can modulate grain growth and stabilize the lattice structure,collectively enabling low-defect-density and high-quality perovskite films.Besides,we also conducted quantitively loss analysis and confirmed that the TA addition effectively reduces trap-assisted non-radiative recombination.Consequently,the champion efficiency of the n-i-p structure is up to 24.77% with outstanding operational and humidity stability.Remarkably,in the triple-cation perovskite system,the incorporation of the TA additive similarly enabled the fabrication of high-quality films,ultimately yielding a p-i-n configuration with a champion efficiency of 26.11%.展开更多
The strong corrosion resistance and corrosion behavior of the FeNiCoCrW_(0.2)Al_(0.1) high-entropy alloy in 3.5 wt%NaCl solution was investigated.In order to explain the Cl−induced degradation of diferent metal oxides...The strong corrosion resistance and corrosion behavior of the FeNiCoCrW_(0.2)Al_(0.1) high-entropy alloy in 3.5 wt%NaCl solution was investigated.In order to explain the Cl−induced degradation of diferent metal oxides on the surface of the passivate film,the energy required for the interaction of the corrosion oxidation products NiO,CoO,Fe_(2)O_(3),and Cr_(2)O_(3) surfaces with Cl−is compared and calculated based on the assumptions of the point defect model and the density functional theory by using the electrochemical impedance spectroscopy and the X-ray photoelectron spectroscopy for the analysis of the monodouble-layer structure and elemental compositions of passivate film in the corrosion process.The combined experimental and simulation results showed that the alloy passivates naturally in air,forming a single passivation layer.The compositional layering of the passivation film in 3.5 wt%NaCl solution occurred with the increase of the contact time with NaCl.A doublelayer passivation with a two-layered combinatorial structure was formed due to the imbalanced depletion of Co and Fe during corrosion,and that the dense outer structure of this high-entropy alloy,which was made up of NiO and Cr_(2)O_(3),provided the predominantly high corrosion resistance.This paper provided a new perspective to study the strong corrosion resistance of FeNiCoCr-based high-entropy alloys.展开更多
Tin oxide has emerged as a promising electron transport material in perovskite solar cells due to its high conductivity and photostability.However,the inherent defects in SnO_(2)nanoparticles and their imperfect bondi...Tin oxide has emerged as a promising electron transport material in perovskite solar cells due to its high conductivity and photostability.However,the inherent defects in SnO_(2)nanoparticles and their imperfect bonding with perovskite at the interface lead to additional energy loss.To achieve bifacial passivation on the SnO_(2)electron transport layer and the SnO_(2)/perovskite interface synchronously,a multifunctional surface modulation strategy has been developed by incorporating O-phospho-L-serine monolithium salt(PSLi)to regulate the SnO_(2)nanoparticles.PS-Li coordinates with SnO_(2)through the phosphate/carboxyl groups,with the exposed amino group passivating the uncoordinated lead ions at the interface.The introduction of a lithium ion further regulates the energy band of SnO_(2),accelerating electron extraction and transport.This multifunctional modulation strategy reduces trap states from tin dangling bonds and oxygen vacancies,enhancing film conductivity.It also regulates the growth of the perovskite crystal and reduces nonradiative recombination at the interface.Consequently,the optimized perovskite solar cells achieve power conversion efficiencies(PCEs)of 24.91% for small-area devices and 23.14% for minimodules(aperture area of 30 cm^(2)).The unencapsulated device retains 91% and 89% of its initial PCE after enduring 1000 h under ambient conditions,and 500 h under 1 sun illumination in N2atmosphere,respectively.展开更多
Poly(3-hexylthiophene)(P3HT)is one of the most promising hole-transporting materials in the pursuit of efficient and stable perovskite solar cells due to its outstanding stability and low cost.However,the intrinsic lo...Poly(3-hexylthiophene)(P3HT)is one of the most promising hole-transporting materials in the pursuit of efficient and stable perovskite solar cells due to its outstanding stability and low cost.However,the intrinsic low carrier density of P3 HT and poor contact between the P3HT/perovskite interface always lead to a low performance of the solar cell,while conventional chemical doping always makes the films unstable and limits the scalability.In this work,for the first time,we simultaneously enhanced the hole transporting properties of P3HT film and the interface of perovskite by doping it with a judiciously designed oxidized small molecule organic semiconductor.The organic salt not only can promote the lamellar crystallinity of P3HT to obtain better charge transport properties,but also reduce the defects of perovskite.As a result,we achieved champion efficiencies of 23.0%for small-area solar cells and 18.8%for larger-area modules(48.0 cm^(2)).This efficiency is the highest value for P3HT-based perovskite modules.Moreover,the solar cells show excellent operational stability,retaining over 95%of their initial efficiencies after1200 h of continuous operation.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDs),which allow atomic-scale manipulation,have supe-rior electrical and optical properties that challenge the limits of traditional bulk semiconductors like silico...Two-dimensional(2D)transition metal dichalcogenides(TMDs),which allow atomic-scale manipulation,have supe-rior electrical and optical properties that challenge the limits of traditional bulk semiconductors like silicon^([1,2]).As a repre-sentative TMD and a promising 2D channel material for high-performance,scalable p-type transistors,tungsten diselenide(WSe_(2))has attracted considerable academic and industrial interest for its potential in advanced complementary metal−oxide−semiconductor(CMOS)logic technology and in extending Moore’s Law^([3−7]).展开更多
Organic-inorganic hybrid metal halide perovskite solar cells(PSCs)have attracted much attention due to their high photoelectric conversion efficiency(PCE)and low cost.The certificated PCE of small active area(below 0....Organic-inorganic hybrid metal halide perovskite solar cells(PSCs)have attracted much attention due to their high photoelectric conversion efficiency(PCE)and low cost.The certificated PCE of small active area(below 0.1 cm^(2))device has reached 26.7%[1].However,when considering the scaled-up commercialization of PSCs,an obvious efficiency drop exists for the translation to large-area perovskite submodules(PSMs)with areas more than 200 cm^(2),thus limiting the practical commercialization[2].The major PCE gap between small area cells and large area modules arises the drop of open-circuit voltage(VOC)and fill factor(FF).Formamidinium lead iodide(FAPbI_(3))is now the mostly widely used and highly efficient perovskite composition.However,the photo-active black α-FAPbI_(3) phase will spontaneously transform into photo-inactive yellowδ-FAPbI_(3) phase at room temperature[3].展开更多
Nowadays,a stack of heavily doped polysilicon(poly-Si)and tunnel oxide(SiO_(x))is widely employed to improve the passivation performance in n-type tunnel oxide passivated contact(TOPCon)silicon solar cells.In this cas...Nowadays,a stack of heavily doped polysilicon(poly-Si)and tunnel oxide(SiO_(x))is widely employed to improve the passivation performance in n-type tunnel oxide passivated contact(TOPCon)silicon solar cells.In this case,it is critical to develop an in-line advanced fabrication process capable of producing high-quality tunnel SiO_(x).Herein,an in-line ozone-gas oxidation(OGO)process to prepare the tunnel SiO_(x) is proposed to be applied in n-type TOPCon solar cell fabrication,which has obtained better performance compared with previously reported in-line plasma-assisted N2O oxidation(PANO)process.In order to explore the underlying mechanism,the electrical properties of the OGO and PANO tunnel SiO_(x) are analyzed by deep-level transient spectroscopy technology.Notably,continuous interface states in the band gap are detected for OGO tunnel SiO_(x),with the interface state densities(D_(it))of 1.2×10^(12)–3.6×10^(12) cm^(-2) eV^(-1) distributed in Ev+(0.15–0.40)eV,which is significantly lower than PANO tunnel SiO_(x).Furthermore,X-ray photoelectron spectroscopy analysis indicate that the percentage of SiO_(2)(Si^(4+))in OGO tunnel SiO_(x) is higher than which in PANO tunnel SiO_(x).Therefore,we ascribe the lower D_(it) to the good inhibitory effects on the formation of low-valent silicon oxides during the OGO process.In a nutshell,OGO tunnel SiO_(x) has a great potential to be applied in n-type TOPCon silicon solar cell,which may be available for global photovoltaics industry.展开更多
Interfacial defects and environmental instability at perovskite surfaces pose significant challenges for inverted perovskite solar cells(PSCs). Surface post-treatment strategies have emerged as a viable approach to im...Interfacial defects and environmental instability at perovskite surfaces pose significant challenges for inverted perovskite solar cells(PSCs). Surface post-treatment strategies have emerged as a viable approach to improve film quality and passivate defects. Although organic molecules can passivate both surfaces and grain boundaries via hydrogen or covalent bonding,their limited adsorption specificity often results in incomplete defect neutralization. In this work, we introduce a bilayer passivation approach employing phenethylammonium iodide(PEAI) and n-octylammonium iodide(OAI) to concurrently mitigate nonradiative recombination and improve stability. PEAI passivates undercoordinated Pb^(2+) at grain boundaries and surfaces, effectively eliminating deep-level traps and suppressing non-radiative losses. Meanwhile, OAI forms a hydrophobic barrier on the perovskite surface through its long alkyl chains, inhibiting moisture penetration without compromising interfacial charge transport. As a result, the perovskite film exhibits significantly enhanced optoelectronic performance and environmental stability,achieving a champion power conversion efficiency(PCE) of 24.48%.展开更多
Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres...Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.展开更多
The transpassivation and pitting corrosion behavior of a high-nitrogen stainless steel(HNS),Fe18Cr15Mn3Mo0.92N,were systematically investigated by electrochemical analysis,morphology observation,and X-ray photoelectro...The transpassivation and pitting corrosion behavior of a high-nitrogen stainless steel(HNS),Fe18Cr15Mn3Mo0.92N,were systematically investigated by electrochemical analysis,morphology observation,and X-ray photoelectron spectroscopy surface analysis.It was surprisingly found that no pitting corrosion occurred in the transpassivation region of HNS.This electrochemical corrosion behavior is untypical for stainless steels,i.e.,the traditional critical pitting potential method was invalid for HNS.Both N and Cr enrichments in the transpassivation film on HNS were found extremely higher than those in the passivation film.The N existed in the form of[CrN]complex,which could stabilize the above both films.Besides,the corrosion product of N was detected as NH_(3) that exhibited an effective corrosion inhibition effect.On this basis,although the transition of Cr from 3-valent to 6-valent was confirmed,the transpassivation film on HNS still maintained it high stability and no pitting was found to occur.Therefore,the real pitting resistance of HNS should be higher than the expected before.And the stable transpassivation film played an important role in its untypical pitting corrosion resistance.展开更多
Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes th...Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes the electrode structure instability,leading to poor cyclic stability.What’s worse,the natural Al2O3 layer on commercial Al pellets is always existed as a robust insulating barrier for elec-trons,which brings the voltage dip and results in low reversible capacity.Herein,this work synthesized core-shell Al@C-Sn pellets for LIBs by a plus-minus strategy.In this proposal,the natural Al2O3 passivation layer is eliminated when annealing the pre-introduced SnCl2,meanwhile,polydopamine-derived carbon is introduced as dual functional shell to liberate the fresh Al core from re-oxidization and alle-viate the volume swellings.Benefiting from the addition of C-Sn shell and the elimination of the Al2O3 passivation layer,the as-prepared Al@C-Sn pellet electrode exhibits little voltage dip and delivers a reversible capacity of 1018.7 mAh·g^(-1) at 0.1 A·g^(-1) and 295.0 mAh·g^(-1) at 2.0 A·g^(-1)(after 1000 cycles),respectively.Moreover,its diffusion-controlled capacity is muchly improved compared to those of its counterparts,confirming the well-designed nanostructure contributes to the rapid Li-ion diffusion and further enhances the lithium storage activity.展开更多
基金financially supported by The Scientific and Technological Research Council of Türkiye(TüBITAK)under Project No.119F185the support of the Interdisciplinary Centre for Mathematical and Computational Modelling at the University of Warsaw(ICM UW)under computational allocation no.g93-1617。
文摘The modification of the perovskite surface using functional additives is one of the most promising strategies to reduce nonradiative recombination and improve the stability of perovskite solar cells(PSCs).In this work,a novel quaternary pyridinium-based halide salt,1-ethyl-4-(methoxycarbonyl)pyridinium iodide(EMCP-I),is introduced as an effective post-treatment molecule to improve the quality of the perovskite film.EMCP-I exhibits dual functionality to passivate both negatively and positively charged defects and improve the film morphology.Furthermore,the treatment fine-tunes energy level alignment between the perovskite layer and the hole transport layer(HTL),facilitating more efficient charge transport.Consequently,EMCP-I-treated devices achieve a remarkable power conversion efficiency(PCE)improvement from 20.5% to 22.6%,driven primarily by an enhanced open-circuit voltage(VOC).Beyond efficiency gains,the treatment significantly enhances the environmental and operational stabilities of solar cells.This work provides a guide for tailoring quaternary pyridinium-based molecules for simultaneous improvement of the efficiency and stability of PSCs.
基金supported by the National Natural Science Foundation of China(No.61904073)Spring City Plan-Special Program for Young Talents(No.K202005007)+4 种基金Yunnan Talents Support Plan for Yong Talents(No.XDYC-QNRC-20220482)Yunnan Local Colleges Applied Basic Research Projects(No.202101BA070001-138)Scientific Research Fund of Yunnan Education Department(No.2023Y0883)Frontier Research Team of Kunming University 2023Key Laboratory of Artificial Microstructures in Yunnan Higher Education。
文摘Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,and the anode utilization rate is low.In this work,reduced graphene oxide(RGO)fabricated via high-temperature annealing or L-ascorbic acid(L.AA)reduction was first used to obtain Si nanowires/RGO-1000(Si NWs/RGO-1000)and Si nanowires/RGO-L.AA(Si NWs/RGO-L.AA)composite anodes for SABs.It was found that RGO suppressed the passivation and self-corrosion reactions and that SABs using Si NWs/RGO-L.AA as the anode can discharge for more than 700 h,breaking the previous performance of SABs,and that the specific capacity was increased by 90.8%compared to bare Si.This work provides a new solution for the design of high specific capacity SABs with nanostructures and anode protective layers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92265113,12034018,12474490,and 62404248)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302300)。
文摘Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the wafer.These traps can degrade the device stability and cause an excessively high threshold voltage.Surface passivation is regarded as an effective method to mitigate these impacts.In this study,we perform low-thermal-budget chemical passivation using the nitric acid oxidation of silicon method on the surface of strained germanium devices and investigate the impact of passivation on the device stability.The results demonstrate that surface passivation effectively reduces the interface defect density.This not only improves the stability of the device's threshold voltage but also enhances its long-term static stability.Furthermore,we construct a band diagram of hole surface tunneling at the static operating point to gain a deeper understanding of the physical mechanism through which passivation affects the device stability.This study provides valuable insights for future optimization of strained Ge-based quantum devices and advances our understanding of how interface states affect device stability.
基金the financial support of the National Natural Science Foundation of China(Nos.52375339 and 52305399)the Basic and Applied Basic Research Program of Guangdong Province(No.2021A1515110729).
文摘The precipitation behavior,corrosion,and passivation performance of solutionized and severely sensitized SAF 2507 super-duplex stainless steel subjected to a temperature of 900℃for 10 h are investigated in a twofold concentrated seawater at 60℃.The sensitized alloy exhibits 66.1%γphases and 33.9%σphases,and the originalαphases have completely decomposed through eutectoid transformation,resulting in a microstructure characterized by coarse blockyσ/γ2 aggregates.High defect densities and an increased amount of oxyhydroxides and hydroxides are present in the passive film on the sensitized alloy,thereby enhancing n-type semiconducting character.The inferior performance of the passive film on the sensitized alloy is ascribed to the increased potential drop across the film/solution interface,the high defect densities,and the pronounced n-type character of the passive film resulting from the variations in its constituents.The precipitation ofσphase during sensitization significantly increases intergranular corrosion susceptibility and decreases critical pitting temperature,breakdown potential,and polarization resistance in hot concentrated seawater.
基金support from the Focus Group‘Next Generation Organic Photovoltaics’participating with the Dutch Institute for Fundamental Energy Research(DIFFER)(FOM130)Advanced Materials research program of the Zernike National Research Centre under the Bonus Incentive Scheme(BIS)of the Dutch Ministry for Education,Culture and Science.
文摘Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is attributed to the instability of Sn^(2+),which easily oxidizes to Sn^(4+),creating Sn vacancies and increasing the open-circuit voltage loss.In this work,we implemented tin thiocyanate(Sn(SCN)_(2))as an additive for passivating the bulk defects of a germanium-doped tin halide perovskite film.Adding Sn^(2+)and SCN-ions reduces the Sn and iodine vacancies,limiting non-radiative recombination and favoring longer charge-carrier dynamics.Moreover,the addition of Sn(SCN)_(2) induces a higher film crystallinity and preferential orientation of the(l00)planes parallel to the substrate.The passivated devices showed improved photovoltaic parameters with the best open-circuit voltage of 0.716 V and the best efficiency of 12.22%,compared to 0.647 V and 10.2%for the reference device.In addition,the passivated solar cell retains 88.7%of its initial efficiency after 80 min of illumination under 100 mW cm^(-2) and is substantially better than the control device,which reaches 82.6%of its initial power conversion efficiency only after 30 min.This work demonstrates the passivation potential of tin-based additives,which combined with different counterions give a relatively large space of choices for passivation of Sn-based perovskites.
基金financial support from the National Natural Science Foundation of China(Grant numbers 22439001,52172198,51902117)the China Postdoctoral Science Foundation(Grant number BX20240123)the Fundamental Research Funds for the Central Universities(Grant number HUST:2024JYCXJJ043)。
文摘The stacking of multiple defect-rich grain boundaries(GBs)along the long transportation path(~3μm)of charge carriers in printable mesoscopic perovskite solar cells(p-MPSCs)impedes their power conversion efficiency(PCE).Organic Lewis bases are widely utilized for defect passivation at GBs,but how their passivation efficiency affects energy loss remains unclear.Here we employed triphenylphosphine(TPP)and triphenylphosphine oxide(TPPO)as the model passivators in p-MPSCs.TPPO has a more negatively charged center than TPP,which enables its stronger coordination with one of the most common and detrimental defects at the GBs—undercoordinated lead.When added into the perovskite with the same ratio,TPPO passivates defects more significantly and thus less TPPO remaining inactive compared with TPP.Inactive organic passivators accumulated at the GBs could impose barriers to charge carrier transportation.Indeed,TPPO improves the device performance more significantly with a champion PCE of 20.54%achieved.Besides,the TPPO devices demonstrate excellent stability with 95%of initial PCE remaining after 600 h of maximum power point tracking at(55±5)℃.
基金National Natural Science Foundation of China(No.22065038)High-Level Talents Introduction in Yunnan Province(No.C619300A010)+3 种基金the Fund for Excellent Young Scholars of Yunnan(No.202001AW070008)Spring City Plan:the Highlevel Talent Promotion and Training Project of Kunming(No.2022SCP005)for financial supportthe support from the Postdoctoral Research Foundation of Yunnan University(No.W8223004)the Postdoctoral Foundation of Department of Human Resources and Social Security of Yunnan Province(No.C615300504046)。
文摘Defects at the grain boundaries(GBs)of perovskite film highly restrict both the efficiency and stability of perovskite solar cells(PSCs).Herein,organic small molecules of butanedioic acid(BA)and acetylenedicarboxylic acid(AA),containing two carbonyl(C=O)groups and different core-units,were incorporated into perovskite as additives for PSCs application.Thanks to the strong coordination interaction between C=O group and under-coordinated Pb^(2+),the additives can effectively passivate film defects and regulate the perovskite crystallization,yielding high-quality perovskite films with lower defect densities.More importantly,the additives can efficiently regulate the charge transport behaviors in PSCs.Benefiting from the defects passivation and the regulation of charge carrier dynamics,the BA and AA-treaded PSCs show the power conversion efficiencies of 21.52%and 20.50%,which are higher than that of the control device(19.41%).Besides,the optimal devices exhibit a remarkable enhanced long-term stability and moisture tolerance compared to the pristine devices.Furthermore,the transient absorption spectrum reveals the mechanism of enhanced photovoltaic performances,attributing to the improvement of charge transport capability at the perovskite/Spiro-OMeTAD interfaces.This work affords a promising strategy to improve the efficiency and stability of PSCs through regulating the charge-carrier dynamic process in perovskite film.
基金supported by the National Key R&D Program of China(Grant 2022YFB2402200)National Natural Science Foundation of China(Grant 92372206,52271140,52171194)+2 种基金Jilin Province Science and Technology Development Plan Funding Project(Grant YDZJ202301-ZYTS545)National Natural Science Foundation of China Excellent Young Scientists(Overseas)Youth Innovation Promotion Association CAS(Grant 2020230)。
文摘Aqueous zinc batteries offer significant potential for large-scale energy storage,wearable devices,and medium-to low-speed transportation due to their safety,affordability,and environmental friendliness.However,the uneven zinc deposition at the anode side caused by localized reaction activity from the passivation layer presents challenges that significantly impact the battery's stability and lifespan.In this study,we have proposed an expandable and maneuverable gel sustained-release(GSR)treatment to polish the Zn metal,which in situ converts its native passivation layer into a composite interphase layer with nanocrystal zinc phosphate and flexible polyvinyl alcohol.Such a thin and uniform interface contributes to fast and homogeneous Zn ion transport and improved anti-corrosion ability,enabling uniform zinc deposition without dendrite growth and thereby improving the battery performance with high-rate ability and long cycle life.This GSR treatment method,characterized by its simplicity,low cost,and universality,facilitates the widespread application of aqueous zinc batteries.
基金supported by the National Natural Science Foundation of China(51802081,62074052,and 62104061)the Natural Science Foundation of Henan Province(232300420145).
文摘The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enhancement of CZTSSe devices.Although the incorporation of Ag in CZTSSe can effectively suppress the SnZn-related defects and significantly improve the resulting cell performance,an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution.Herein,this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress SnZn defects for achieving efficient CZTSSe devices.In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution.Importantly,the C=O and O-H functional groups induced by hydrogen incorporation,serving as an electron donor,can interact with under-coordinated cations in CZTSSe material,effectively passivating the SnZn-related defects.Consequently,the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination,prolongs minority carrier lifetime,and thus yields a champion efficiency of 14.74%,showing its promising application in kesterite-based CZTSSe devices.
基金funding support from the National Key Research and Development Program of China(2022YFE0137400)the National Natural Science Foundation of China(62274040)+3 种基金funding support from the National Natural Science Foundation of China(62304046)the National Key Research and Development Program of China(2022YFB2802802)the Key Laboratory of Rare Earths,Ganjiang Innovation Academy,Chinese Academy of Sciencessupport from the Shanghai Science and Technology Innovation Action Plan 2023 Special Project for Supporting Carbon Peak Carbon Neutrality Project(23DZ1200400)。
文摘Highly crystalline perovskite absorbers with low defect-state densities minimizing nonradiative recombination losses are a critical prerequisite for fabricating state-of-the-art photovoltaics.Here,we use a tartaric acid(TA)molecule with two carboxyl and two hydroxyl groups as an additive to improve the performance and stability of the device simultaneously.The strong carboxyl-Pb2+coordination slows nucleation kinetics and passivates Pb-related traps,whereas hydroxyl-I-hydrogen bonding can modulate grain growth and stabilize the lattice structure,collectively enabling low-defect-density and high-quality perovskite films.Besides,we also conducted quantitively loss analysis and confirmed that the TA addition effectively reduces trap-assisted non-radiative recombination.Consequently,the champion efficiency of the n-i-p structure is up to 24.77% with outstanding operational and humidity stability.Remarkably,in the triple-cation perovskite system,the incorporation of the TA additive similarly enabled the fabrication of high-quality films,ultimately yielding a p-i-n configuration with a champion efficiency of 26.11%.
基金supported by the Natural Science Foundation of Shanghai(No.20ZR1424000)the National Natural Science Foundation of China(No.52305214)the Sichuan Science and Technology Program(No.2023YFSY0004).
文摘The strong corrosion resistance and corrosion behavior of the FeNiCoCrW_(0.2)Al_(0.1) high-entropy alloy in 3.5 wt%NaCl solution was investigated.In order to explain the Cl−induced degradation of diferent metal oxides on the surface of the passivate film,the energy required for the interaction of the corrosion oxidation products NiO,CoO,Fe_(2)O_(3),and Cr_(2)O_(3) surfaces with Cl−is compared and calculated based on the assumptions of the point defect model and the density functional theory by using the electrochemical impedance spectroscopy and the X-ray photoelectron spectroscopy for the analysis of the monodouble-layer structure and elemental compositions of passivate film in the corrosion process.The combined experimental and simulation results showed that the alloy passivates naturally in air,forming a single passivation layer.The compositional layering of the passivation film in 3.5 wt%NaCl solution occurred with the increase of the contact time with NaCl.A doublelayer passivation with a two-layered combinatorial structure was formed due to the imbalanced depletion of Co and Fe during corrosion,and that the dense outer structure of this high-entropy alloy,which was made up of NiO and Cr_(2)O_(3),provided the predominantly high corrosion resistance.This paper provided a new perspective to study the strong corrosion resistance of FeNiCoCr-based high-entropy alloys.
基金financially supported by the Science Foundation of the Chinese Academy of Sciences。
文摘Tin oxide has emerged as a promising electron transport material in perovskite solar cells due to its high conductivity and photostability.However,the inherent defects in SnO_(2)nanoparticles and their imperfect bonding with perovskite at the interface lead to additional energy loss.To achieve bifacial passivation on the SnO_(2)electron transport layer and the SnO_(2)/perovskite interface synchronously,a multifunctional surface modulation strategy has been developed by incorporating O-phospho-L-serine monolithium salt(PSLi)to regulate the SnO_(2)nanoparticles.PS-Li coordinates with SnO_(2)through the phosphate/carboxyl groups,with the exposed amino group passivating the uncoordinated lead ions at the interface.The introduction of a lithium ion further regulates the energy band of SnO_(2),accelerating electron extraction and transport.This multifunctional modulation strategy reduces trap states from tin dangling bonds and oxygen vacancies,enhancing film conductivity.It also regulates the growth of the perovskite crystal and reduces nonradiative recombination at the interface.Consequently,the optimized perovskite solar cells achieve power conversion efficiencies(PCEs)of 24.91% for small-area devices and 23.14% for minimodules(aperture area of 30 cm^(2)).The unencapsulated device retains 91% and 89% of its initial PCE after enduring 1000 h under ambient conditions,and 500 h under 1 sun illumination in N2atmosphere,respectively.
基金financially supported by the National Natural Science Foundation of China(52472248 and 22075221)the Key Research and Development Project of Shanxi Province(202202060301003 and 202202060301015)the Innovation Program of Wuhan-Shuguang Project(2023010201020367)。
文摘Poly(3-hexylthiophene)(P3HT)is one of the most promising hole-transporting materials in the pursuit of efficient and stable perovskite solar cells due to its outstanding stability and low cost.However,the intrinsic low carrier density of P3 HT and poor contact between the P3HT/perovskite interface always lead to a low performance of the solar cell,while conventional chemical doping always makes the films unstable and limits the scalability.In this work,for the first time,we simultaneously enhanced the hole transporting properties of P3HT film and the interface of perovskite by doping it with a judiciously designed oxidized small molecule organic semiconductor.The organic salt not only can promote the lamellar crystallinity of P3HT to obtain better charge transport properties,but also reduce the defects of perovskite.As a result,we achieved champion efficiencies of 23.0%for small-area solar cells and 18.8%for larger-area modules(48.0 cm^(2)).This efficiency is the highest value for P3HT-based perovskite modules.Moreover,the solar cells show excellent operational stability,retaining over 95%of their initial efficiencies after1200 h of continuous operation.
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs),which allow atomic-scale manipulation,have supe-rior electrical and optical properties that challenge the limits of traditional bulk semiconductors like silicon^([1,2]).As a repre-sentative TMD and a promising 2D channel material for high-performance,scalable p-type transistors,tungsten diselenide(WSe_(2))has attracted considerable academic and industrial interest for its potential in advanced complementary metal−oxide−semiconductor(CMOS)logic technology and in extending Moore’s Law^([3−7]).
基金support from open fund of Fujian Provincial Key Laboratory of Functional Materials and Applications(Xiamen University of Technology,fma2024003)the National Key R&D Program of China(No.2021YFB3500400)the National Natural Science Foundation of China(Nos.52073286 and 22275185).
文摘Organic-inorganic hybrid metal halide perovskite solar cells(PSCs)have attracted much attention due to their high photoelectric conversion efficiency(PCE)and low cost.The certificated PCE of small active area(below 0.1 cm^(2))device has reached 26.7%[1].However,when considering the scaled-up commercialization of PSCs,an obvious efficiency drop exists for the translation to large-area perovskite submodules(PSMs)with areas more than 200 cm^(2),thus limiting the practical commercialization[2].The major PCE gap between small area cells and large area modules arises the drop of open-circuit voltage(VOC)and fill factor(FF).Formamidinium lead iodide(FAPbI_(3))is now the mostly widely used and highly efficient perovskite composition.However,the photo-active black α-FAPbI_(3) phase will spontaneously transform into photo-inactive yellowδ-FAPbI_(3) phase at room temperature[3].
基金supported by the National Natural Science Foundation of China(Nos.62025403 and U23A20354)the Natural Science Foundation of Zhejiang Province(LD22E020001)+1 种基金“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2022C01215,2024C01055)the Fundamental Research Funds for the Central Universities(226-2022-00200).
文摘Nowadays,a stack of heavily doped polysilicon(poly-Si)and tunnel oxide(SiO_(x))is widely employed to improve the passivation performance in n-type tunnel oxide passivated contact(TOPCon)silicon solar cells.In this case,it is critical to develop an in-line advanced fabrication process capable of producing high-quality tunnel SiO_(x).Herein,an in-line ozone-gas oxidation(OGO)process to prepare the tunnel SiO_(x) is proposed to be applied in n-type TOPCon solar cell fabrication,which has obtained better performance compared with previously reported in-line plasma-assisted N2O oxidation(PANO)process.In order to explore the underlying mechanism,the electrical properties of the OGO and PANO tunnel SiO_(x) are analyzed by deep-level transient spectroscopy technology.Notably,continuous interface states in the band gap are detected for OGO tunnel SiO_(x),with the interface state densities(D_(it))of 1.2×10^(12)–3.6×10^(12) cm^(-2) eV^(-1) distributed in Ev+(0.15–0.40)eV,which is significantly lower than PANO tunnel SiO_(x).Furthermore,X-ray photoelectron spectroscopy analysis indicate that the percentage of SiO_(2)(Si^(4+))in OGO tunnel SiO_(x) is higher than which in PANO tunnel SiO_(x).Therefore,we ascribe the lower D_(it) to the good inhibitory effects on the formation of low-valent silicon oxides during the OGO process.In a nutshell,OGO tunnel SiO_(x) has a great potential to be applied in n-type TOPCon silicon solar cell,which may be available for global photovoltaics industry.
基金financial support from the National Key R&D Program of China (No. 2021YFB3800102)the Key Research Project of Hefei Normal University (No. 2023QN08)+2 种基金National Natural Science Foundation of China (Nos. U22A20142, 52302324, and 52272252)CASHIPS Director's Fund (Nos. YZJJ-GGZX-2022-01 and YZJJ202304-CX)Dreams Foundation of Jianghuai Advance Technology Center (No. 2023-ZM01X011)。
文摘Interfacial defects and environmental instability at perovskite surfaces pose significant challenges for inverted perovskite solar cells(PSCs). Surface post-treatment strategies have emerged as a viable approach to improve film quality and passivate defects. Although organic molecules can passivate both surfaces and grain boundaries via hydrogen or covalent bonding,their limited adsorption specificity often results in incomplete defect neutralization. In this work, we introduce a bilayer passivation approach employing phenethylammonium iodide(PEAI) and n-octylammonium iodide(OAI) to concurrently mitigate nonradiative recombination and improve stability. PEAI passivates undercoordinated Pb^(2+) at grain boundaries and surfaces, effectively eliminating deep-level traps and suppressing non-radiative losses. Meanwhile, OAI forms a hydrophobic barrier on the perovskite surface through its long alkyl chains, inhibiting moisture penetration without compromising interfacial charge transport. As a result, the perovskite film exhibits significantly enhanced optoelectronic performance and environmental stability,achieving a champion power conversion efficiency(PCE) of 24.48%.
基金supported by the Science and Technology Development Fund,Macao SAR(File no.FDCT-0082/2021/A2,0010/2022/AMJ,006/2022/ALC)UM's research fund(File no.MYRG2022-00241-IAPME,MYRGCRG2022-00009-FHS)+2 种基金the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)the Natural Science Foundation of China(61935017,62175268)Science,Technology and Innovation Commission of Shenzhen Municipality(Project Nos.JCYJ20220530113015035,JCYJ20210324120204011,and KQTD2015071710313656).
文摘Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
基金financially supported by the National Natural Science Foundation of China(Grant No.51801220).
文摘The transpassivation and pitting corrosion behavior of a high-nitrogen stainless steel(HNS),Fe18Cr15Mn3Mo0.92N,were systematically investigated by electrochemical analysis,morphology observation,and X-ray photoelectron spectroscopy surface analysis.It was surprisingly found that no pitting corrosion occurred in the transpassivation region of HNS.This electrochemical corrosion behavior is untypical for stainless steels,i.e.,the traditional critical pitting potential method was invalid for HNS.Both N and Cr enrichments in the transpassivation film on HNS were found extremely higher than those in the passivation film.The N existed in the form of[CrN]complex,which could stabilize the above both films.Besides,the corrosion product of N was detected as NH_(3) that exhibited an effective corrosion inhibition effect.On this basis,although the transition of Cr from 3-valent to 6-valent was confirmed,the transpassivation film on HNS still maintained it high stability and no pitting was found to occur.Therefore,the real pitting resistance of HNS should be higher than the expected before.And the stable transpassivation film played an important role in its untypical pitting corrosion resistance.
基金supported by the National Natural Science Foundation of China(No.62105277)the Natural Science Foundation of Henan Province(No.232300420139)the Internationalization Training of High-Level Talents of Henan Province,and Nanhu Scholars Program for Young Scholars of XYNU.
文摘Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes the electrode structure instability,leading to poor cyclic stability.What’s worse,the natural Al2O3 layer on commercial Al pellets is always existed as a robust insulating barrier for elec-trons,which brings the voltage dip and results in low reversible capacity.Herein,this work synthesized core-shell Al@C-Sn pellets for LIBs by a plus-minus strategy.In this proposal,the natural Al2O3 passivation layer is eliminated when annealing the pre-introduced SnCl2,meanwhile,polydopamine-derived carbon is introduced as dual functional shell to liberate the fresh Al core from re-oxidization and alle-viate the volume swellings.Benefiting from the addition of C-Sn shell and the elimination of the Al2O3 passivation layer,the as-prepared Al@C-Sn pellet electrode exhibits little voltage dip and delivers a reversible capacity of 1018.7 mAh·g^(-1) at 0.1 A·g^(-1) and 295.0 mAh·g^(-1) at 2.0 A·g^(-1)(after 1000 cycles),respectively.Moreover,its diffusion-controlled capacity is muchly improved compared to those of its counterparts,confirming the well-designed nanostructure contributes to the rapid Li-ion diffusion and further enhances the lithium storage activity.