期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Investigation on cavitating turbulent flow for the twisted NACA66 hydrofoil using a PANS model with helicity modification 被引量:1
1
作者 Chen Geng Zhao-hui Qian +2 位作者 Ke-xin Zheng Wei-xiang Ye Xian-wu Luo 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第2期219-231,共13页
In the present paper,the unsteady cavitating turbulent flow over the twisted NACA66 hydrofoil is investigated based on an modified shear stress transfer k-ωpartially averaged Navier-Stokes(MSST PANS)model,i.e.,new MS... In the present paper,the unsteady cavitating turbulent flow over the twisted NACA66 hydrofoil is investigated based on an modified shear stress transfer k-ωpartially averaged Navier-Stokes(MSST PANS)model,i.e.,new MSST PANS(NMSST PANS)model,where the production term of kinetic energy in the turbulence model is modified with helicity.Compared with the experimental data,cavitation evolution and its characteristic frequency are satisfactorily predicted by the proposed NMSST PANS model.It is revealed that the interaction among the main flow,the reentrant jets,and sheet cavitation causes the formation of the primary shedding cavity near the mid-span and the secondary shedding cavity at each side of the twisted hydrofoil,and further induces the remarkable pressure gradient around shedding cavities.Along with the development of the primary and the secondary shedding cavities,the great pressure gradient associated with large cavity volume variation promotes the vortical flow generation and the spatial deformation of vortex structure during cavitation evolution,and results in the primary and the secondary U-type vortices.Further,dynamic mode decomposition(DMD)analysis is utilized to confirm the interaction among the main flow,the main reentrant jet and two side reentrant jets,and cavitation.These results indicate that the proposed NMSST PANS model is suitable to simulate the complicated cavitating turbulent flow for various engineering applications. 展开更多
关键词 Cavitating turbulent flow partially averaged Navier-Stokes(pans)model HYDROFOIL numerical simulation
原文传递
Research on blade tip clearance cavitation and turbulent kinetic energy characteristics of axial flow pump based on the partially-averaged Navier-Stokes model 被引量:1
2
作者 Xiao-qi Jia Shuai-kang Zhang Zu-chao Zhu 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第1期184-201,共18页
To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation ... To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation values of an axial flow pump,followed by experimental validation.The experimental result shows that compared with the shear stress transport(SST)k-ωmodel,the PANS model significantly reduces the eddy viscosity of the flow field to make the vortex structure clearer and allow the turbulence scale to be more robustly analyzed.The cavitation area within the axial flow pump mainly comprises of TLV cavitation,clearance cavitation and tip leakage flows combined effect of triangular cloud cavitation formed.The formation and development of cavitation are accompanied by the formation and evolution of vortex,and variations in vortex structure also generate and promote the development of cavitation.In addition,an in-depth analysis of the relationship between the turbulent kinetic energy(TKE)transport equation and cavitation patterns was also conducted,finding that the regions with relatively high TKE are mainly distributed around gas/liquid boundaries with serious cavitation and evident gas-liquid change.This phenomenon is mainly attributed to the combined effect of the pressure action term,stress diffusion term and TKE production term. 展开更多
关键词 CAVITATION axial flow pump tip leakage vortex(TLV) partially-averaged Navier-Stokes(pans)model turbulent kinetic energy(TKE)
原文传递
PARTIALLY AVERAGED NAVIER-STOKES METHOD FOR TIME-DEPENDENT TURBULENT CAVITATING FLOWS 被引量:14
3
作者 HUANG Biao WANG Guo-yu 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第1期26-33,共8页
Cavitation typically occurs when the fluid pressure is lower than the vapor pressure in a local thermodynamic state,and the flow is frequently unsteady and turbulent.The Reynolds-Averaged Navier-Stokes(RANS)approach... Cavitation typically occurs when the fluid pressure is lower than the vapor pressure in a local thermodynamic state,and the flow is frequently unsteady and turbulent.The Reynolds-Averaged Navier-Stokes(RANS)approach has been popular for turbulent flow computations.The most widely used ones,such as the standard k-εmodel,have well-recognized deficiencies when treating time dependent flow field.To identify ways to improve the predictive capability of the current RANS-based engineering turbulence closures,conditional averaging is adopted for the Navier-Stokes equation,and one more parameter,based on the filter size,is introduced into the k-εmodel.In the Partially Averaged Navier-Stokes(PANS)model,the filter width is mainly controlled by the ratio of unresolved-to-total kinetic energy1f.This model is assessed in unsteady cavitating flows over a Clark-Y hydrofoil.From the experimental validations regarding the forces,frequencies,cavity visualizations and velocity distributions,the PANS model is shown to improve the predictive capability considerably,in comparison to the standard k-ε model,and also,it is observed the value of1f in the PANS model has substantial influence on the predicting result.As the filter width1f is decreased,the PANS model can effectively reduce the eddy viscosity near the closure region which can significantly influence the capture of the detach cavity,and this model can reproduce the time-averaged velocity quantitatively around the hydrofoil. 展开更多
关键词 cavitating flow pans model filter width unresolved-to-total kinetic energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部