A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method. The film was characterized using XRD, AFM, and UV. The result show...A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method. The film was characterized using XRD, AFM, and UV. The result showed that the TiO2 film consists of both cuboid-shaped and anatase-phased TiO2 nanoparticles. The average grain size of TiO2 in the film was approximately 20 nm. After coating with PANI, the particle was changed into irregular spherical-shaped and the size was increased up to approximately 35 nm in diameter. UV-Vis spectroscopy analysis indicated that the coating of TiO2 with PANI would result in an enhancement of photocatalytic efficiency and an extension of the photoresponse of TiO2. The band gap of the PANI/TiO2 film was 3.18 eV. The photocatalytic property of the film was evaluated by the degradation of rhodamine-B. It was found that 67.1% and 83.2% of rhodamine-B could be degraded under sunlight and UV irradiation within 120 min using the PANI/TiO2 composite t-tim as photocatalyst.展开更多
ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (...ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.展开更多
A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer...A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The existence of oxygen vacancies in the WO3-x was confirmed with an X-ray photoelectron spectroscopy(XPS), and the accurate oxygen index was determined by a modified potentiometric titrimetry method. After 3h of photoelectrocatalytic reduction, the formic acid yield of the WO3-x/TiO2 film is 872 nmol/cm^2, which is 1.83 times that of the WO3/TiO2 film. The results of PEC performance demonstrate that the introduction of WO3-x nanoparticles can improve the charge transfer performance so as to enhance the performance of PEC reduction of CO2 into formic acid.展开更多
Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the ...Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the current values of sputtering target. The effects of n(Zn)/n(Ti) on the microstructures of TiO2-ZnO films were investigated by SEM, AFM, Raman and XPS, and their photocatalytic decomposition of methyl orange solutions was evaluated. The results show that an increase in n(Zn)/n(Ti) typically results in a decrease in the grain size of composite films firstly and then an increase of grain size, while an increase in n(Zn)/n(Ti) leads to an increase in film roughness firstly and then a decrease in film roughness. Both grain size and roughness of TiO2-ZnO films reach the maximum and minimum at n(Zn)/n(Ti) of 1/9.3, respectively. The n(Zn)/n(Ti) shows little effect on the valences of Zn and Ti elements, which mainly exist in the form of TiO2 and ZnO phases. The n(Zn)/n(Ti) has influence on the amount of anatase/rutile TiO2 heterojunction in the film. With increase of the n(Zn)/n(Ti), the absorption intensity of the composite film increases and the absorption region extends to 450 nm, which is redshifted as much as 150 nm in comparison with the pure TiO2 films. However, the photocatalytic abilities of heterogeneous composite films do not depend on the n(Zn)/n(Ti) but rather on the microstructures of the TiO2-ZnO composite films. Degradation rate of the film reaches the maximum and the photocatalytic decomposition of pollutants works best when n(Zn)/n(Ti)=1:9.3.展开更多
A novel titanium dioxide (TiO2) film comprising both nanotubes and nanopaticles was fabricated by an anodization process of the modified titanium. The local electric field at the anodized surface was simulated and i...A novel titanium dioxide (TiO2) film comprising both nanotubes and nanopaticles was fabricated by an anodization process of the modified titanium. The local electric field at the anodized surface was simulated and its influence on the morphology of the TiO2 film was discussed. The results show that the electric field strength is enhanced by the covering. The growth rate of TiO2 increases with the assist of the local electric field. However, TiO2 dissolution is hindered since the local electric field prevents [TiF6]6- from diffusing. It means that the balance condition for the formation of nanotubes is broken, and TiO2 nanoparticles are formed. Moreover, the crystal structure of the TiO2 film was confirmed using X-ray diffraction and Raman analysis. The anatase is a main phase for the proposed film.展开更多
Polyaniline (PANI), polyaniline/titanium dioxide (PANI/TiO2), polyaniline/tin oxide (PANI/SnO2) and polyaniline/indium oxide (PANI/In203) thin films were developed by using an in-situ self-assembly method at ...Polyaniline (PANI), polyaniline/titanium dioxide (PANI/TiO2), polyaniline/tin oxide (PANI/SnO2) and polyaniline/indium oxide (PANI/In203) thin films were developed by using an in-situ self-assembly method at -10℃. Chemical structure, optical property and morphology of all the thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). NH3 gas-sensing properties of PANI and PANI nanocomposite thin films were examined at ambient temperature. The results showed that all the sensors composed of PANI nanocomposite thin films had faster response/recovery rate with better reproducibility, selectivity and long-term stability to NH3 than PANI,thiS film sensor, and PANI/TiO2 nanocomposite thin film sensor showed optimum NH3 gas-sensing characteristics. The effect of humidity on the responses of all the sensors was also investigated.展开更多
Anatase TiO2 films were successfully prepared on foam nickel substrates by sol-gel technique using tetrabutyl titanate as precursor. The characteristics of the TiO2 films were investigated by XPS, XRD, FE-SEM, TEM and...Anatase TiO2 films were successfully prepared on foam nickel substrates by sol-gel technique using tetrabutyl titanate as precursor. The characteristics of the TiO2 films were investigated by XPS, XRD, FE-SEM, TEM and UV-Vis absorption spectra. The photocatalytic activities of TiO2 films were investigated by photocatalytic degradation reactions of gaseous acetaldehyde, an indoor pollutant, under ultraviolet light irradiation. It was found that Ni^2+ doping into TiO2 films due to the foam nickel substrates resulted in the extension of absorption edges of TiO2 films from UV region to visible light region. The pre-heating for foam nickel substrates resulted in the formation of NiO layer, which prevented effectively the injection of photogenerated electrons from TiO2 films to metal nickel. The TiO2 films displayed high photocatalytic activity for the degradation of acetaldehyde, and were enhanced by calcining the substrates and coating TiO2 films repeatedly. The high activity was mainly attributed to the improvement of the characteristics of substrate surface and the increase of active sites on photocatalyst.展开更多
TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-r...TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-ray diffraction(XRD),atomic force microscopy(AFM) and ultraviolet spectrophotometer,respectively.The results indicated that working pressure was the key deposition parameter in?uencing the TiO2 film phase composition at room temperature,which directly affected its photocatalytic activity.With increasing working pressure,the target self-bias decreases monotonously.Therefore,low temperature TiO2 phase(anatase) could be deposited with high working pressure.The anatase TiO2 films deposited with 1.4 Pa working pressure displayed the highest photocatalytic activity by the decomposition of Methyl Orange solution,which the degradation rate reached the maximum(35%) after irradiation by ultraviolet light for 1 h.展开更多
With rapid progressive application of TiO2 thin films, magnetron sputtering becomes a very interesting method to prepare such multi-functional thin films. This paper focuses on influences of various deposition process...With rapid progressive application of TiO2 thin films, magnetron sputtering becomes a very interesting method to prepare such multi-functional thin films. This paper focuses on influences of various deposition processes and deposition rate on the structures and properties of TiO2 thin films. Anatase, rutile or amorphous TiO2 films with various crystalline structures and different photocatalytic, optical and electrical properties can be produced by varying sputtering gases, substrate temperature, annealing process, deposition rate and the characteristics of magnetron sputtering. This may in turn affect the functions of TiO2 films in many applications. Furthermore, TiO2-based composites films can overcome many limitations and improve the properties of TiO2 films.展开更多
基金This work was financially supported by the Combined Project between the Educational Commission and the Economic Commission of Gansu Province (Nos. 99CX-04, 0310B-08)the Natural Science Foundation of Gansu Province (No. 3ZS041-A25-028)the Invention Project of Science & Technology (No. KJCXGC-01, NWNU), China.
文摘A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method. The film was characterized using XRD, AFM, and UV. The result showed that the TiO2 film consists of both cuboid-shaped and anatase-phased TiO2 nanoparticles. The average grain size of TiO2 in the film was approximately 20 nm. After coating with PANI, the particle was changed into irregular spherical-shaped and the size was increased up to approximately 35 nm in diameter. UV-Vis spectroscopy analysis indicated that the coating of TiO2 with PANI would result in an enhancement of photocatalytic efficiency and an extension of the photoresponse of TiO2. The band gap of the PANI/TiO2 film was 3.18 eV. The photocatalytic property of the film was evaluated by the degradation of rhodamine-B. It was found that 67.1% and 83.2% of rhodamine-B could be degraded under sunlight and UV irradiation within 120 min using the PANI/TiO2 composite t-tim as photocatalyst.
基金Project(gf200901002)supported by the Open Research Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology of Nanchang Hangkong University,China
文摘ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.
基金Project(21471054)supported by the National Natural Science Foundation of China
文摘A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The existence of oxygen vacancies in the WO3-x was confirmed with an X-ray photoelectron spectroscopy(XPS), and the accurate oxygen index was determined by a modified potentiometric titrimetry method. After 3h of photoelectrocatalytic reduction, the formic acid yield of the WO3-x/TiO2 film is 872 nmol/cm^2, which is 1.83 times that of the WO3/TiO2 film. The results of PEC performance demonstrate that the introduction of WO3-x nanoparticles can improve the charge transfer performance so as to enhance the performance of PEC reduction of CO2 into formic acid.
基金Project (2010JQ6008) supported by the Natural Science Foundation of Shaanxi Province,China
文摘Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the current values of sputtering target. The effects of n(Zn)/n(Ti) on the microstructures of TiO2-ZnO films were investigated by SEM, AFM, Raman and XPS, and their photocatalytic decomposition of methyl orange solutions was evaluated. The results show that an increase in n(Zn)/n(Ti) typically results in a decrease in the grain size of composite films firstly and then an increase of grain size, while an increase in n(Zn)/n(Ti) leads to an increase in film roughness firstly and then a decrease in film roughness. Both grain size and roughness of TiO2-ZnO films reach the maximum and minimum at n(Zn)/n(Ti) of 1/9.3, respectively. The n(Zn)/n(Ti) shows little effect on the valences of Zn and Ti elements, which mainly exist in the form of TiO2 and ZnO phases. The n(Zn)/n(Ti) has influence on the amount of anatase/rutile TiO2 heterojunction in the film. With increase of the n(Zn)/n(Ti), the absorption intensity of the composite film increases and the absorption region extends to 450 nm, which is redshifted as much as 150 nm in comparison with the pure TiO2 films. However, the photocatalytic abilities of heterogeneous composite films do not depend on the n(Zn)/n(Ti) but rather on the microstructures of the TiO2-ZnO composite films. Degradation rate of the film reaches the maximum and the photocatalytic decomposition of pollutants works best when n(Zn)/n(Ti)=1:9.3.
文摘A novel titanium dioxide (TiO2) film comprising both nanotubes and nanopaticles was fabricated by an anodization process of the modified titanium. The local electric field at the anodized surface was simulated and its influence on the morphology of the TiO2 film was discussed. The results show that the electric field strength is enhanced by the covering. The growth rate of TiO2 increases with the assist of the local electric field. However, TiO2 dissolution is hindered since the local electric field prevents [TiF6]6- from diffusing. It means that the balance condition for the formation of nanotubes is broken, and TiO2 nanoparticles are formed. Moreover, the crystal structure of the TiO2 film was confirmed using X-ray diffraction and Raman analysis. The anatase is a main phase for the proposed film.
基金supported by the National Natural Science Foundation of China under grant Nos.60425101 and 60736005
文摘Polyaniline (PANI), polyaniline/titanium dioxide (PANI/TiO2), polyaniline/tin oxide (PANI/SnO2) and polyaniline/indium oxide (PANI/In203) thin films were developed by using an in-situ self-assembly method at -10℃. Chemical structure, optical property and morphology of all the thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). NH3 gas-sensing properties of PANI and PANI nanocomposite thin films were examined at ambient temperature. The results showed that all the sensors composed of PANI nanocomposite thin films had faster response/recovery rate with better reproducibility, selectivity and long-term stability to NH3 than PANI,thiS film sensor, and PANI/TiO2 nanocomposite thin film sensor showed optimum NH3 gas-sensing characteristics. The effect of humidity on the responses of all the sensors was also investigated.
基金Project supported by the Special Foundation of Nanometer Technology from Shanghai Municipal Science and Technology Commis-sion(STCSM) (No. 0552nm002).
文摘Anatase TiO2 films were successfully prepared on foam nickel substrates by sol-gel technique using tetrabutyl titanate as precursor. The characteristics of the TiO2 films were investigated by XPS, XRD, FE-SEM, TEM and UV-Vis absorption spectra. The photocatalytic activities of TiO2 films were investigated by photocatalytic degradation reactions of gaseous acetaldehyde, an indoor pollutant, under ultraviolet light irradiation. It was found that Ni^2+ doping into TiO2 films due to the foam nickel substrates resulted in the extension of absorption edges of TiO2 films from UV region to visible light region. The pre-heating for foam nickel substrates resulted in the formation of NiO layer, which prevented effectively the injection of photogenerated electrons from TiO2 films to metal nickel. The TiO2 films displayed high photocatalytic activity for the degradation of acetaldehyde, and were enhanced by calcining the substrates and coating TiO2 films repeatedly. The high activity was mainly attributed to the improvement of the characteristics of substrate surface and the increase of active sites on photocatalyst.
基金supported by the Dalian Foundation for Development of Science and Technology (No.2006A13GX029)
文摘TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-ray diffraction(XRD),atomic force microscopy(AFM) and ultraviolet spectrophotometer,respectively.The results indicated that working pressure was the key deposition parameter in?uencing the TiO2 film phase composition at room temperature,which directly affected its photocatalytic activity.With increasing working pressure,the target self-bias decreases monotonously.Therefore,low temperature TiO2 phase(anatase) could be deposited with high working pressure.The anatase TiO2 films deposited with 1.4 Pa working pressure displayed the highest photocatalytic activity by the decomposition of Methyl Orange solution,which the degradation rate reached the maximum(35%) after irradiation by ultraviolet light for 1 h.
文摘With rapid progressive application of TiO2 thin films, magnetron sputtering becomes a very interesting method to prepare such multi-functional thin films. This paper focuses on influences of various deposition processes and deposition rate on the structures and properties of TiO2 thin films. Anatase, rutile or amorphous TiO2 films with various crystalline structures and different photocatalytic, optical and electrical properties can be produced by varying sputtering gases, substrate temperature, annealing process, deposition rate and the characteristics of magnetron sputtering. This may in turn affect the functions of TiO2 films in many applications. Furthermore, TiO2-based composites films can overcome many limitations and improve the properties of TiO2 films.