A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excit...A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excited states transition, respectively, and the Rydberg transition is driven by a microwave(MW) field. A gain peak appears in the probe transmission and is sensitive to the MW field strength. Optical PAM-4 can be achieved by encoding an MW signal and decoding the magnitude of a probe signal. Simulation results show that the differential nonlinearity and the integral nonlinearity of the proposed scheme can be reduced by 5 times and 6 times, respectively, compared with the counterparts of previous scheme, and the ratio of level separation mismatch is close to the ideal value 1. Moreover, the scheme is extended to optical PAM-8 signal, which may further improve the spectral efficiency.展开更多
The rapid advancement of technology and the increasing demand for high- performance computing have fueled the development of faster and more efficient interconnects. Among these, the Peripheral Component Interconnect ...The rapid advancement of technology and the increasing demand for high- performance computing have fueled the development of faster and more efficient interconnects. Among these, the Peripheral Component Interconnect Express (PCIe) standard has emerged as a dominant interface in modern computing systems. This paper provides a detailed technical analysis of the evolution from PCIe to the latest PCIe 6 standards, highlighting the key enhancements, architectural changes, performance improvements, and potential applications. Through an in-depth examination of the PCIe 6 specification, we explore the implications and benefits of this new interface technology, paving the way for future innovations in data transfer and interconnectivity. The analysis of PCIe to PCIe 6, a next-generation interface evolution, has revealed significant advancements and improvements in terms of bandwidth, performance, latency, and scalability. PCIe 6 offers a doubling of the bandwidth compared to its predecessor, PCIe 5, providing higher data transfer rates and increased throughput. Overall, the analysis reveals that PCIe 6 represents a significant advancement in interconnect technology, offering improved performance, enhanced features, and expanded capabilities.展开更多
基金Project supported by the Shandong Natural Science Foundation,China (Grant No. ZR2021LLZ006)the National Natural Science Foundation of China (Grant Nos. 61675118 and 12274123)+1 种基金the Taishan Scholars Program of Shandong Province,China (Grant No. ts20190936)the Shandong University of Science and Technology Research Fund,China(Grant No. 2015TDJH102)。
文摘A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excited states transition, respectively, and the Rydberg transition is driven by a microwave(MW) field. A gain peak appears in the probe transmission and is sensitive to the MW field strength. Optical PAM-4 can be achieved by encoding an MW signal and decoding the magnitude of a probe signal. Simulation results show that the differential nonlinearity and the integral nonlinearity of the proposed scheme can be reduced by 5 times and 6 times, respectively, compared with the counterparts of previous scheme, and the ratio of level separation mismatch is close to the ideal value 1. Moreover, the scheme is extended to optical PAM-8 signal, which may further improve the spectral efficiency.
文摘The rapid advancement of technology and the increasing demand for high- performance computing have fueled the development of faster and more efficient interconnects. Among these, the Peripheral Component Interconnect Express (PCIe) standard has emerged as a dominant interface in modern computing systems. This paper provides a detailed technical analysis of the evolution from PCIe to the latest PCIe 6 standards, highlighting the key enhancements, architectural changes, performance improvements, and potential applications. Through an in-depth examination of the PCIe 6 specification, we explore the implications and benefits of this new interface technology, paving the way for future innovations in data transfer and interconnectivity. The analysis of PCIe to PCIe 6, a next-generation interface evolution, has revealed significant advancements and improvements in terms of bandwidth, performance, latency, and scalability. PCIe 6 offers a doubling of the bandwidth compared to its predecessor, PCIe 5, providing higher data transfer rates and increased throughput. Overall, the analysis reveals that PCIe 6 represents a significant advancement in interconnect technology, offering improved performance, enhanced features, and expanded capabilities.