AIM: TO identify the differentially expressed miRNAs and their targets in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). METHODS: Six hundred and sixty seven human miRNAs were quantitatively ...AIM: TO identify the differentially expressed miRNAs and their targets in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). METHODS: Six hundred and sixty seven human miRNAs were quantitatively analyzed by Taqman lowdensity miRNA array (TLDA) in HBV-HCC tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the significant function and pathway of the differentially expressed miRNAs in HBV-HCC. TargetScan software was used to predict the targets of deregulated miRNAs. Western blotting and luciferase assay were performed to verify the targets of these miRNAs.RESULTS: Ten up-regulated miRNAs (miR-217, miR- 518b, miR-517c, miR-520g, miR-519a, miR-522, miR- 518e, miR-525-3p, miR-512-3p, and miR-518a-3p) and 11 down-regulated miRNAs (miR-138, miR-214, miR-214#, miR-199a-5p, miR-433, miR-511, miR-592, miR-483-3p, miR-483-5p, miR-708 and miR-1275) were identified by Taqman miRNAs array and confirmed quantitatively by reverse transcription polymerase chain reaction in HCC and adjacent non-tumor tissues. GO and KEGG pathway analysis revealed that "regulation of actin cytoskeleton" and "pathway in cancer" are most likely to play critical roles in HCC tumorigenesis. MiR- 519a and ribosomal protein S6 kinase polypeptide 3 (RPS6KA3) were predicted as the most significant can-didates by miRNA-mRNA network. In addition, cyclin D3 (CCND3) and clathrin heavy chain (CHC), usually up-regulated in HCC tissues, were validated as the di- rect target of miR-138 and miR-199a-5p, respectively.展开更多
In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal par...In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity.展开更多
P-Type NiO foam with rough nanostructured surface was prepared by the surface treatment of Ni foam,and then it was decorated with n-type ZnO nanopyramids to construct a 3D p–n junction foam. The p–n junction foam wa...P-Type NiO foam with rough nanostructured surface was prepared by the surface treatment of Ni foam,and then it was decorated with n-type ZnO nanopyramids to construct a 3D p–n junction foam. The p–n junction foam was used for electrochemical detection of dopamine and the sensing performance was improved significantly compared with the single NiO and ZnO. High sensitivity(171 mμA/mmol/L), fast response(2 s), excellent selectivity and stability were achieved. It was attributed to the introduction of numerous p–n junction interfaces, the interfacial potential barrier played as a tuning factor for the electrochemical determination of dopamine. The results demonstrated it would be an important way to improve the biosensing performance by introducing the p–n junction interfaces.展开更多
基金Supported by The Key Programs of the Ministry of Science and Technology, No. 2012ZX10002009-004Shanghai Leading Academic Discipline Project (B901)Science Fund for Creative Research Groups, NSFC, China, No. 30921006
文摘AIM: TO identify the differentially expressed miRNAs and their targets in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). METHODS: Six hundred and sixty seven human miRNAs were quantitatively analyzed by Taqman lowdensity miRNA array (TLDA) in HBV-HCC tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the significant function and pathway of the differentially expressed miRNAs in HBV-HCC. TargetScan software was used to predict the targets of deregulated miRNAs. Western blotting and luciferase assay were performed to verify the targets of these miRNAs.RESULTS: Ten up-regulated miRNAs (miR-217, miR- 518b, miR-517c, miR-520g, miR-519a, miR-522, miR- 518e, miR-525-3p, miR-512-3p, and miR-518a-3p) and 11 down-regulated miRNAs (miR-138, miR-214, miR-214#, miR-199a-5p, miR-433, miR-511, miR-592, miR-483-3p, miR-483-5p, miR-708 and miR-1275) were identified by Taqman miRNAs array and confirmed quantitatively by reverse transcription polymerase chain reaction in HCC and adjacent non-tumor tissues. GO and KEGG pathway analysis revealed that "regulation of actin cytoskeleton" and "pathway in cancer" are most likely to play critical roles in HCC tumorigenesis. MiR- 519a and ribosomal protein S6 kinase polypeptide 3 (RPS6KA3) were predicted as the most significant can-didates by miRNA-mRNA network. In addition, cyclin D3 (CCND3) and clathrin heavy chain (CHC), usually up-regulated in HCC tissues, were validated as the di- rect target of miR-138 and miR-199a-5p, respectively.
基金supported by the Research Project of Tianjin Earthquake Agency(No.yb201901)Seismic Regime Tracking Project of CEA(No.2019010127)Combination Project with Monitoring,Prediction and Scientific Research of Earthquake Technology,CEA(No.3JH-201901006)
文摘In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity.
基金sponsored by Qingdao City Programs for Scienceand Technology Plan Projects(No.15-9-1-82-jch)National Natural Science Foundation of China(No.51572249)+1 种基金Fundamental Research Funds for the Central University(No.201513008)Natural Science Foundation of Shandong Province(No.ZR2014EMM021)
文摘P-Type NiO foam with rough nanostructured surface was prepared by the surface treatment of Ni foam,and then it was decorated with n-type ZnO nanopyramids to construct a 3D p–n junction foam. The p–n junction foam was used for electrochemical detection of dopamine and the sensing performance was improved significantly compared with the single NiO and ZnO. High sensitivity(171 mμA/mmol/L), fast response(2 s), excellent selectivity and stability were achieved. It was attributed to the introduction of numerous p–n junction interfaces, the interfacial potential barrier played as a tuning factor for the electrochemical determination of dopamine. The results demonstrated it would be an important way to improve the biosensing performance by introducing the p–n junction interfaces.