P2P2B模式下云服务投入是工业互联网(industrial internet of things,IIoT)平台的关键战略决策之一.构建由IIoT平台、龙头企业、潜在客户构成的演化博弈模型,研究IIoT平台在公有云研发投入和私有云研发投入中的策略选择,及其与龙头企业...P2P2B模式下云服务投入是工业互联网(industrial internet of things,IIoT)平台的关键战略决策之一.构建由IIoT平台、龙头企业、潜在客户构成的演化博弈模型,研究IIoT平台在公有云研发投入和私有云研发投入中的策略选择,及其与龙头企业的生态合作问题.结果表明:虽然公有云存在数据泄露隐患,但较高的规模收益仍会吸引IIoT平台投入公有云研发,而平台搭建期内龙头企业的高合作意愿会促使平台投入私有云,随着龙头企业合作研发的比例增加,平台又将改变其投入策略.驱动龙头企业合作的因素可以是成本收益、技术提升等直接因素,也可以是规模收益、数据泄露概率等间接因素.最后,基于平台生命周期探讨了初创期、平台搭建期与生态系统期IIoT平台的系统稳定策略,并得到相应的管理启示.展开更多
随着能源系统互联化和能源交易市场化的高度发展,通过多综合能源系统(Multi-Integrated Energy System,MIES)的区域互联使综合能源系统(Integrated Energy System,IES)的能源利用率更高效、经济收益更可观。首先,文中构建多能源市场背...随着能源系统互联化和能源交易市场化的高度发展,通过多综合能源系统(Multi-Integrated Energy System,MIES)的区域互联使综合能源系统(Integrated Energy System,IES)的能源利用率更高效、经济收益更可观。首先,文中构建多能源市场背景下的MIES合作联盟的能量共享架构,建立MIES之间的电能和备用点对点(Point To Point,P2P)交易模型;其次,对新能源出力的不确定性,电价及备用价格波动风险进行分析,文中采用条件风险价值(Conditional Value-at-Risk,CVaR)理论,构建风险成本函数,并将其纳入综合运行成本模型;最后,选择交替方向乘子法(Alternating Direction Method Of Multipliers,ADMM)进行分布式求解,并通过算例分析验证模型的正确性与合理性,实现MIES运行成本的最小化和支付收益最大化,体现不同条件风险厌恶系数对MIES的影响。展开更多
设计基于安全的P2P(Peer-To-Peer)能量共享市场,可以促进微网自主地参与到本地的能量共享市场,推动可再生能源的利用。针对多微电网能量共享策略优化问题,首先建立了考虑碳排放配额的多微网能量共享模型,在此基础上提出了微电网最优共...设计基于安全的P2P(Peer-To-Peer)能量共享市场,可以促进微网自主地参与到本地的能量共享市场,推动可再生能源的利用。针对多微电网能量共享策略优化问题,首先建立了考虑碳排放配额的多微网能量共享模型,在此基础上提出了微电网最优共享策略,最后以最小化微网的能源成本为目标,采用基于自适应交替方向乘子法(Adaptive Alternating Direction Multiplier Method,AADMM)求解得到最优能量共享计划。仿真案例研究表明所提出的AADMM算法可以有效减少迭代次数和迭代时间,并且所提出的策略对微网具有能源经济性和碳减排效益。此外采用AADMM算法求解微电网之间电能共享问题,仅需微网之间的交易电量和交易电价参数,有效避免了其它隐私信息的泄露。展开更多
After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally alte...After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally altered how energy is consumed,traded,and utilized.This change signifies a crucial shift as the power system evolves from its traditional hierarchical organization to a more decentralized approach.At the heart of this transformation are innovative energy distribution models,like peer-to-peer(P2P)sharing,which enable communities to collaboratively manage their energy resources.The effectiveness of P2P sharing not only improves the economic prospects for prosumers,who generate and consume energy,but also enhances energy resilience and sustainability.This allows communities to better leverage local resources while fostering a sense of collective responsibility and collaboration in energy management.However,there is still no extensive implementation of such sharing models in today’s electricitymarkets.Research on distributed energy P2P trading is still in the exploratory stage,and it is particularly important to comprehensively understand and analyze the existing distributed energy P2P trading market.This paper contributes with an overview of the P2P markets that starts with the network framework,market structure,technical approach for trading mechanism,and blockchain technology,moving to the outlook in this field.展开更多
在“双碳”战略目标下,如何实现虚拟电厂(virtual power plant,VPP)之间的灵活交互并通过碳价作为激励促进VPP低碳运行,是一个值得研究的问题,为此,基于碳流理论研究VPP点对点(peer to peer,P2P)交易模型。首先,根据碳排放流理论分析碳...在“双碳”战略目标下,如何实现虚拟电厂(virtual power plant,VPP)之间的灵活交互并通过碳价作为激励促进VPP低碳运行,是一个值得研究的问题,为此,基于碳流理论研究VPP点对点(peer to peer,P2P)交易模型。首先,根据碳排放流理论分析碳流在网络中的分布特性,并引入天然气形成多能网络,建立低碳经济调度模型;其次,考虑各VPP参与交易的隐私问题,提出包含报量与报价交易信息的指标量化方法,建立基于综合优先权的P2P交易模型;同时,结合VPP在网络中承担的碳排放责任,在P2P交易机制中引入碳定价方法,建立基于碳税的“能源-碳”综合价格模型;最后,通过算例验证了所提方法不仅能降低VPP的运行成本,还能有效降低碳排放量。展开更多
针对P2P网络中大量节点在线带来的能耗问题,引入休假策略,规定在一定条件下部分服务节点将会离线,这种离线行为视为休假状态。数学模型的建立基于经典M/M/c排队,创建具有两类服务台和两类顾客的排队模型。本文将采用矩阵几何解法求解排...针对P2P网络中大量节点在线带来的能耗问题,引入休假策略,规定在一定条件下部分服务节点将会离线,这种离线行为视为休假状态。数学模型的建立基于经典M/M/c排队,创建具有两类服务台和两类顾客的排队模型。本文将采用矩阵几何解法求解排队模型的稳态分布,从而进一步得到混合P2P网络的性能指标,来考察该网络的能耗表现。This paper proposes an energy consumption control strategy in Peer-to-Peer (P2P) networks. It is stipulated that some service peers will be offline under certain conditions, and this offline behavior is regarded as a vacation state. The hybrid P2P network can be modeled as an M/M/c queue, which serves two types of servers and two types of customers. The stationary distribution of the queue model can be obtained by matrix-geometric solution method. Thereby the energy consumption performance of hybrid P2P networks can be studied through performance indicators.展开更多
随着互联网的发展,P2P作为一种新兴的网络技术,凭借着去中心化、可扩展性等独特的优势,已经被广泛应用于各个领域。本文针对P2P网络中的能耗问题,引入部分节点异步多重休假策略来降低系统能耗,建立了一个带有不耐烦顾客、N-策略和异步...随着互联网的发展,P2P作为一种新兴的网络技术,凭借着去中心化、可扩展性等独特的优势,已经被广泛应用于各个领域。本文针对P2P网络中的能耗问题,引入部分节点异步多重休假策略来降低系统能耗,建立了一个带有不耐烦顾客、N-策略和异步休假的两阶段M/M/c排队模型。利用拟生灭过程和矩阵几何解方法得到系统稳态下的概率分布向量,推导出节点平均队长和系统能耗等性能指标的表达式,构造系统的社会效用函数,得到相应的最优到达率和最优服务率。With the development of the Internet, P2P, as an emerging network technology, has been widely used in various fields by means of its unique advantages such as decentralization and scalability. To address the issue of energy consumption in the P2P network, the asynchronous multiple vacation strategy is introduced and a two-stage M/M/c queuing model with impatient customers, N-policy and asynchronous vacation is built. The probability distribution vectors in the steady state are obtained by using the quasi-birth-and-death process and matrix-geometric solution method. And the expressions for the performance indicators are deduced, such as the energy consumption of the system. The optimal arrival rate and optimal service rate are obtained by constructing the social utility function.展开更多
文摘P2P2B模式下云服务投入是工业互联网(industrial internet of things,IIoT)平台的关键战略决策之一.构建由IIoT平台、龙头企业、潜在客户构成的演化博弈模型,研究IIoT平台在公有云研发投入和私有云研发投入中的策略选择,及其与龙头企业的生态合作问题.结果表明:虽然公有云存在数据泄露隐患,但较高的规模收益仍会吸引IIoT平台投入公有云研发,而平台搭建期内龙头企业的高合作意愿会促使平台投入私有云,随着龙头企业合作研发的比例增加,平台又将改变其投入策略.驱动龙头企业合作的因素可以是成本收益、技术提升等直接因素,也可以是规模收益、数据泄露概率等间接因素.最后,基于平台生命周期探讨了初创期、平台搭建期与生态系统期IIoT平台的系统稳定策略,并得到相应的管理启示.
文摘随着能源系统互联化和能源交易市场化的高度发展,通过多综合能源系统(Multi-Integrated Energy System,MIES)的区域互联使综合能源系统(Integrated Energy System,IES)的能源利用率更高效、经济收益更可观。首先,文中构建多能源市场背景下的MIES合作联盟的能量共享架构,建立MIES之间的电能和备用点对点(Point To Point,P2P)交易模型;其次,对新能源出力的不确定性,电价及备用价格波动风险进行分析,文中采用条件风险价值(Conditional Value-at-Risk,CVaR)理论,构建风险成本函数,并将其纳入综合运行成本模型;最后,选择交替方向乘子法(Alternating Direction Method Of Multipliers,ADMM)进行分布式求解,并通过算例分析验证模型的正确性与合理性,实现MIES运行成本的最小化和支付收益最大化,体现不同条件风险厌恶系数对MIES的影响。
文摘设计基于安全的P2P(Peer-To-Peer)能量共享市场,可以促进微网自主地参与到本地的能量共享市场,推动可再生能源的利用。针对多微电网能量共享策略优化问题,首先建立了考虑碳排放配额的多微网能量共享模型,在此基础上提出了微电网最优共享策略,最后以最小化微网的能源成本为目标,采用基于自适应交替方向乘子法(Adaptive Alternating Direction Multiplier Method,AADMM)求解得到最优能量共享计划。仿真案例研究表明所提出的AADMM算法可以有效减少迭代次数和迭代时间,并且所提出的策略对微网具有能源经济性和碳减排效益。此外采用AADMM算法求解微电网之间电能共享问题,仅需微网之间的交易电量和交易电价参数,有效避免了其它隐私信息的泄露。
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally altered how energy is consumed,traded,and utilized.This change signifies a crucial shift as the power system evolves from its traditional hierarchical organization to a more decentralized approach.At the heart of this transformation are innovative energy distribution models,like peer-to-peer(P2P)sharing,which enable communities to collaboratively manage their energy resources.The effectiveness of P2P sharing not only improves the economic prospects for prosumers,who generate and consume energy,but also enhances energy resilience and sustainability.This allows communities to better leverage local resources while fostering a sense of collective responsibility and collaboration in energy management.However,there is still no extensive implementation of such sharing models in today’s electricitymarkets.Research on distributed energy P2P trading is still in the exploratory stage,and it is particularly important to comprehensively understand and analyze the existing distributed energy P2P trading market.This paper contributes with an overview of the P2P markets that starts with the network framework,market structure,technical approach for trading mechanism,and blockchain technology,moving to the outlook in this field.
文摘在“双碳”战略目标下,如何实现虚拟电厂(virtual power plant,VPP)之间的灵活交互并通过碳价作为激励促进VPP低碳运行,是一个值得研究的问题,为此,基于碳流理论研究VPP点对点(peer to peer,P2P)交易模型。首先,根据碳排放流理论分析碳流在网络中的分布特性,并引入天然气形成多能网络,建立低碳经济调度模型;其次,考虑各VPP参与交易的隐私问题,提出包含报量与报价交易信息的指标量化方法,建立基于综合优先权的P2P交易模型;同时,结合VPP在网络中承担的碳排放责任,在P2P交易机制中引入碳定价方法,建立基于碳税的“能源-碳”综合价格模型;最后,通过算例验证了所提方法不仅能降低VPP的运行成本,还能有效降低碳排放量。
文摘针对P2P网络中大量节点在线带来的能耗问题,引入休假策略,规定在一定条件下部分服务节点将会离线,这种离线行为视为休假状态。数学模型的建立基于经典M/M/c排队,创建具有两类服务台和两类顾客的排队模型。本文将采用矩阵几何解法求解排队模型的稳态分布,从而进一步得到混合P2P网络的性能指标,来考察该网络的能耗表现。This paper proposes an energy consumption control strategy in Peer-to-Peer (P2P) networks. It is stipulated that some service peers will be offline under certain conditions, and this offline behavior is regarded as a vacation state. The hybrid P2P network can be modeled as an M/M/c queue, which serves two types of servers and two types of customers. The stationary distribution of the queue model can be obtained by matrix-geometric solution method. Thereby the energy consumption performance of hybrid P2P networks can be studied through performance indicators.
文摘随着互联网的发展,P2P作为一种新兴的网络技术,凭借着去中心化、可扩展性等独特的优势,已经被广泛应用于各个领域。本文针对P2P网络中的能耗问题,引入部分节点异步多重休假策略来降低系统能耗,建立了一个带有不耐烦顾客、N-策略和异步休假的两阶段M/M/c排队模型。利用拟生灭过程和矩阵几何解方法得到系统稳态下的概率分布向量,推导出节点平均队长和系统能耗等性能指标的表达式,构造系统的社会效用函数,得到相应的最优到达率和最优服务率。With the development of the Internet, P2P, as an emerging network technology, has been widely used in various fields by means of its unique advantages such as decentralization and scalability. To address the issue of energy consumption in the P2P network, the asynchronous multiple vacation strategy is introduced and a two-stage M/M/c queuing model with impatient customers, N-policy and asynchronous vacation is built. The probability distribution vectors in the steady state are obtained by using the quasi-birth-and-death process and matrix-geometric solution method. And the expressions for the performance indicators are deduced, such as the energy consumption of the system. The optimal arrival rate and optimal service rate are obtained by constructing the social utility function.