The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanis...The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanisms lack sufficient incentives for emission reductions,and traditional optimization algorithms often face challenges with convergence and local optima in complex PIES scheduling.To address these issues,this paper introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS integration,hydrogen utilization,and the Secretary Bird Optimization Algorithm(SBOA).Key innovations include:(1)A dynamic reward-penalty carbon trading mechanism with coefficients(μ=0.2,λ=0.15),which reduces carbon trading costs by 47.2%(from$694.06 to$366.32)compared to traditional tiered models,incentivizing voluntary emission reductions.(2)The integration of P2G-CCS coupling,which lowers natural gas consumption by 41.9%(from$4117.20 to$2389.23)and enhances CO_(2) recycling efficiency,addressing the limitations of standalone P2G or CCS technologies.(3)TheSBOA algorithm,which outperforms traditionalmethods(e.g.,PSO,GWO)in convergence speed and global search capability,avoiding local optima and achieving 24.39%faster convergence on CEC2005 benchmark functions.(4)A four-energy PIES framework incorporating electricity,heat,gas,and hydrogen,where hydrogen fuel cells and CHP systems improve demand response flexibility,reducing gas-related emissions by 42.1%and generating$13.14 in demand response revenue.Case studies across five scenarios demonstrate the strategy’s effectiveness:total operational costs decrease by 14.7%(from$7354.64 to$6272.59),carbon emissions drop by 49.9%(from 5294.94 to 2653.39kg),andrenewable energyutilizationincreases by24.39%(from4.82%to8.17%).These results affirmthemodel’s ability to reconcile economic and environmental goals,providing a scalable approach for low-carbon transitions in industrial parks.展开更多
在碳达峰碳中和的政策方针背景下,北方地区的冬季由于需要供热,使得热电联产机组(combined heat and power,CHP)强迫出力,限制了新能源的消纳与碳减排的能力。利用碳捕集与封存(carbon capture and storage,CCS)技术将热电联产机组产生...在碳达峰碳中和的政策方针背景下,北方地区的冬季由于需要供热,使得热电联产机组(combined heat and power,CHP)强迫出力,限制了新能源的消纳与碳减排的能力。利用碳捕集与封存(carbon capture and storage,CCS)技术将热电联产机组产生的CO_(2)捕捉并封存,将新能源发电通过电转气(power to gas,P2G)产生氢能并与捕集到的CO_(2)反应生成CH_(4),热电联产的燃气轮机使用合成的CH_(4)并掺入一定比例的H_(2)进行燃烧,循环使用CO_(2),减少碳排放并增加收益,进一步提高虚拟电厂参与电力市场的经济性与低碳性,促进新能源消纳,并保障北方冬季的供热量。建立了考虑P2G及碳捕集的热电联产虚拟电厂的数学模型,并通过MATLAB调用CPLEX求解器进行求解,仿真结果验证了所建模型的有效性。展开更多
在“双碳”背景下,为推进园区级综合能源系统(integrated energy systems,IES)建设、提升清洁能源消纳能力、降低园区碳排放,以综合能源系统运行总成本最小为目标函数,系统安全和机组出力为约束条件,引入电转气与碳捕获系统耦合设备,综...在“双碳”背景下,为推进园区级综合能源系统(integrated energy systems,IES)建设、提升清洁能源消纳能力、降低园区碳排放,以综合能源系统运行总成本最小为目标函数,系统安全和机组出力为约束条件,引入电转气与碳捕获系统耦合设备,综合考虑了阶梯式碳交易和碳封存成本,建立了含氢储能的综合能源系统低碳调度模型。最后以某园区为算例,运用CPLEX求解器对所提模型进行求解,算例结果表明所建模型能够有效提高系统的经济性与低碳性,提高园区新能源消纳能力,减少弃风弃光等成本,进一步降低园区碳排放并减少经济运行成本,提高综合能源系统运行灵活性。展开更多
基金funded by State Grid Beijing Electric Power Company Technology Project,grant number 520210230004.
文摘The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanisms lack sufficient incentives for emission reductions,and traditional optimization algorithms often face challenges with convergence and local optima in complex PIES scheduling.To address these issues,this paper introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS integration,hydrogen utilization,and the Secretary Bird Optimization Algorithm(SBOA).Key innovations include:(1)A dynamic reward-penalty carbon trading mechanism with coefficients(μ=0.2,λ=0.15),which reduces carbon trading costs by 47.2%(from$694.06 to$366.32)compared to traditional tiered models,incentivizing voluntary emission reductions.(2)The integration of P2G-CCS coupling,which lowers natural gas consumption by 41.9%(from$4117.20 to$2389.23)and enhances CO_(2) recycling efficiency,addressing the limitations of standalone P2G or CCS technologies.(3)TheSBOA algorithm,which outperforms traditionalmethods(e.g.,PSO,GWO)in convergence speed and global search capability,avoiding local optima and achieving 24.39%faster convergence on CEC2005 benchmark functions.(4)A four-energy PIES framework incorporating electricity,heat,gas,and hydrogen,where hydrogen fuel cells and CHP systems improve demand response flexibility,reducing gas-related emissions by 42.1%and generating$13.14 in demand response revenue.Case studies across five scenarios demonstrate the strategy’s effectiveness:total operational costs decrease by 14.7%(from$7354.64 to$6272.59),carbon emissions drop by 49.9%(from 5294.94 to 2653.39kg),andrenewable energyutilizationincreases by24.39%(from4.82%to8.17%).These results affirmthemodel’s ability to reconcile economic and environmental goals,providing a scalable approach for low-carbon transitions in industrial parks.
文摘在碳达峰碳中和的政策方针背景下,北方地区的冬季由于需要供热,使得热电联产机组(combined heat and power,CHP)强迫出力,限制了新能源的消纳与碳减排的能力。利用碳捕集与封存(carbon capture and storage,CCS)技术将热电联产机组产生的CO_(2)捕捉并封存,将新能源发电通过电转气(power to gas,P2G)产生氢能并与捕集到的CO_(2)反应生成CH_(4),热电联产的燃气轮机使用合成的CH_(4)并掺入一定比例的H_(2)进行燃烧,循环使用CO_(2),减少碳排放并增加收益,进一步提高虚拟电厂参与电力市场的经济性与低碳性,促进新能源消纳,并保障北方冬季的供热量。建立了考虑P2G及碳捕集的热电联产虚拟电厂的数学模型,并通过MATLAB调用CPLEX求解器进行求解,仿真结果验证了所建模型的有效性。
文摘在“双碳”背景下,为推进园区级综合能源系统(integrated energy systems,IES)建设、提升清洁能源消纳能力、降低园区碳排放,以综合能源系统运行总成本最小为目标函数,系统安全和机组出力为约束条件,引入电转气与碳捕获系统耦合设备,综合考虑了阶梯式碳交易和碳封存成本,建立了含氢储能的综合能源系统低碳调度模型。最后以某园区为算例,运用CPLEX求解器对所提模型进行求解,算例结果表明所建模型能够有效提高系统的经济性与低碳性,提高园区新能源消纳能力,减少弃风弃光等成本,进一步降低园区碳排放并减少经济运行成本,提高综合能源系统运行灵活性。