The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate per...The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode.展开更多
P2-type layered oxides have been considered as promising cathode materials for Na-ion batteries,but the capac-ity decay resulting from the Na+/vacancy ordering and phase transformation limits their future large-scale ...P2-type layered oxides have been considered as promising cathode materials for Na-ion batteries,but the capac-ity decay resulting from the Na+/vacancy ordering and phase transformation limits their future large-scale applica-tions.Herein,the impact of Li-doping in different layers on the structure and electrochemical performance of P2-type Na_(0.7)Ni_(0.35)Mn_(0.65)O_(2) is investigated.It can be found that Li ions successfully enter both the Na and transition metal layers.The strategy of Li-doping can improve the cycling stability and rate capability of P2-type layered oxides,which promotes the development of high-performance Na-ion batteries.展开更多
Mn-based P2-type oxides are considered as promising cathodes for Na-ion batteries;however,they face significant challenges,including structural degradation when charged at high cutoff voltages and structural changes u...Mn-based P2-type oxides are considered as promising cathodes for Na-ion batteries;however,they face significant challenges,including structural degradation when charged at high cutoff voltages and structural changes upon storing in a humid atmosphere.In response to these issues,we have designed an oxide with co-doping of Cu and Al which can balance both cost and structural stability.The redox reaction of Cu^(2+/3+)can provide certain charge compensation,and the introduction of Al can further suppress the Jahn-Teller effect of Mn,thereby achieving superior long-term cycling performance.The ex-situ XRD testing indicates that Cu/Al co-doping can effectively suppress the phase transition of P2-O2 at high voltage,thereby explaining the improvement in electrochemical performance.DFT calculations reveal a high chemical tolerance to moisture,with lower adsorption energy for H_(2)O compared to pure Na_(0.67)Cu_(0.25)Mn_(0.75)O_(2).A representative Na_(0.67)Cu_(0.20)Al_(0.05)Mn_(0.75)O_(2)cathode demonstrates impressive reversible capacities of 148.7 mAh/g at 0.2 C,along with a remarkable capacity retention of 79.1%(2 C,500 cycles).展开更多
To address the challenges of air stability and slurry processability in layered transition metal oxide O_(3)-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM)for sodium-ion batteries(SIBs),we have designed an innovative 500℃...To address the challenges of air stability and slurry processability in layered transition metal oxide O_(3)-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM)for sodium-ion batteries(SIBs),we have designed an innovative 500℃reheating strategy.This method improves the surface properties of NFM without the need for additional coating layers,making it more efficient and suitable for large-scale applications.Pristine NFM(NFM-P)was first synthesized through a high-temperature solid-state method and then modified using this reheating approach(NFM-HT).This strategy significantly enhances air stability and electrochemical performance,yielding an initial discharge specific capacity of 151.46 mAh/g at 0.1C,with a remarkable capacity retention of 95.04%after 100 cycles at 0.5C.Additionally,a 1.7 Ah NFM‖HC(hard carbon)pouch cell demonstrates excellent long-term cycling stability(94.64%retention after 500 cycles at 1C),superior rate capability(86.48%retention at 9C),and strong low-temperature performance(77%retention at-25℃,continuing power supply at-40℃).Notably,even when overcharged to 8.29 V,the pouch cell remained safe without combustion or explosion.This reheating strategy,which eliminates the need for a coating layer,offers a simpler,more scalable solution for industrial production while maintaining outstanding electrochemical performance.These results pave the way for broader commercial adoption of NFM materials.展开更多
Layered P2-type cathodes with high voltage,large capacity,and easy synthesis show great potential for developing sodium(Na)-ion batteries(NIBs).However,the P2–O2 phase transition makes their structural degradation an...Layered P2-type cathodes with high voltage,large capacity,and easy synthesis show great potential for developing sodium(Na)-ion batteries(NIBs).However,the P2–O2 phase transition makes their structural degradation and the Na^(+)/vacancy ordering lowers their redox kinetics.Here,we rationally propose a compositionally graded P2-type cathode,where nickel(Ni)and manganese(Mn)fractions decrease gradually,and cobalt(Co)content increases contiguously from the inside to the outside of a secondary particle.Inside these particles,the Ni/Mn-based compound delivers high capacity and high voltage.On the surface of particles,the Co/Mn-based solid solution offers a stable buffer matrix.Benefiting from these synergistic effects,this graded P2-type cathode shows the elimination of P2–O2 transformation even when charged to 4.4 V,which enables good structural stability,maintaining capacity retention reaching~80%within 300 cycles.Moreover,the Na^(+)/vacancy ordering superstructure is further suppressed,and the Na^(+)diffusion kinetics is significantly improved.The proposed graded structure with optimized chemical composition offers a new perspective for eliminating the unwanted phase transition and thus enhancing the electrochemistry of high-voltage layered cathodes for advanced NIBs.展开更多
Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during ins...Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during insertion and removal of Na+in P_(2)-type layered transition metal oxides generate structura instability and severe capacity decay.To get rid of such a dilemma,we report a structural optimization strategy to promote P2-type layered transition metal oxides with more(010)active planes as an efficien cathode for SIBs.As a result,as-prepared hexagonal-prism P2-type layered Na_(0.71)Ni_(0.16)Li_(0.09)Co_(0.16)Mn0.6O_(2)cathode with more(010)active planes delivers a reversible capacity of 120.1 mAh/g at 0.1 C,impressive rate capability of 52.7 m Ah/g at 10 C,and long-term cycling stability(capacity retention of 95.6%ove200 cycles).The outstanding electrochemical performance benefited from the unique hexagonal-prism with more(010)active facets,which can effectively shorten the diffusion distances of Na+,increase the Na-ion migration dynamics and nanostructural stability during cycling verified by morphology character ization,Rietveld refinement,GITT,density functional theory calculations and operando XRD.展开更多
The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the a...The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the anionic reaction of O^(2-)/O~-to occur during Na^(+) de/intercalation.However,here,we report that the anionic redox can occur in Ru-based layered-oxide-cathodes before full oxidation of Ru^(4+)/Ru^(5+).Combining studies using first-principles calculation and experimental techniques reveals that further Na^(+) deintercalation from P2-Na_(0.33)[Mg_(0.33)Ru_(0.67)]O_(2) is based on anionic oxidation after 0.33 mol Na^(+) deintercalation from P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) with cationic oxidation of Ru^(4+)/Ru^(4.5+).Especially,it is revealed that the only oxygen neighboring 2Mg/1 Ru can participate in the anionic redox during Na^(+) de/intercalation,which implies that the Na-O-Mg arrangement in the P2-Na_(0.33)[M9_(0.33)Ru_(0.67)]O_(2) structure can dramatically lower the thermodynamic stability of the anionic redox than that of cationic redox.Through the O anionic and Ru cationic reaction,P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) exhibits not only a large specific capacity of~172 mA h g^(-1) but also excellent power-capability via facile Na^(+) diffusion and reversible structural change during charge/discharge.These findings suggest a novel strategy that can increase the activity of anionic redox by modulating the local environment around oxygen to develop high-energy-density cathode materials for NIBs.展开更多
The Na-deficient P3-type layered oxide cathode material usually experience complex in-plane Na^(+)/vacancy ordering rearrangement and undesirable P3-O3 phase transitions in the high-voltage region,leading to inferior ...The Na-deficient P3-type layered oxide cathode material usually experience complex in-plane Na^(+)/vacancy ordering rearrangement and undesirable P3-O3 phase transitions in the high-voltage region,leading to inferior cycling performance.Additionally,they exhibit unsatisfactory stability when exposed to water for extended periods.To address these challenges,we propose a Cu/Ti co-doped P3-type cathode material(Na_(0.67)Ni_(0.3)Cu_(0.03)Mn_(0.6)Ti_(0.07)O_(2)),which effectively mitigates Na^(+)/vacancy ordering and suppresses P3-O3 phase transitions at high voltages.As a result,the as-prepared sample exhibited outstanding cyclic performance,with 81.9%retention after 500 cycles within 2.5–4.15 V,and 75.7%retention after300 cycles within 2.5–4.25 V.Meanwhile,it demonstrates enhanced Na^(+)transport kinetics during desodiation/sodiation and reduced growth of charge transfer impedance(R_(ct))after various cycles.Furthermore,the sample showed superb stability against water,exhibiting no discernible degradation in structure,morphology,or electrochemical performance.This co-doping strategy provides new insights for innovative and prospective cathode materials.展开更多
Mn-based layered oxides are among the most promising cathode materials for sodium-ion batteries owing to the advantages of abundance,environmenta friendliness,low cost and high specific capacity.P2 and O'3 are two...Mn-based layered oxides are among the most promising cathode materials for sodium-ion batteries owing to the advantages of abundance,environmenta friendliness,low cost and high specific capacity.P2 and O'3 are two representative structures of Mn-based layered oxides.However,the P2 structure containing insufficien Na generally exhibits low initial charge capacity,while O'3structure with sufficient Na delivers high initial charge capacity but poor cycle stability.This study prepared a multitude of Na_(x)MnO_(2)(x=0.7,0.8,0.9)cathode materials with varying P2/O'3 ratios and further investigated their electrochemical performances.The optimized Na_(0.8)MnO_(2) comprising 69.9 wt%O'3 and 30.1 wt%P2 phase,exhibited relatively balanced specific capacity,Coulombic efficiency and cycle stability.Specifically,it achieved a high specific capacity of 128.9 mAh·g^(-1) with an initia Coulombic efficiency of 98.2%in half-cell configuration The Na_(0.8)MnO_(2)//hard carbon full cell also achieved a high specific capacity of 126.7 mAh·g^(-1) with an initia Coulombic efficiency of 98.9%.Moreover,the capacity fading mechanism was revealed by combining in-situ and ex-situ X-ray diffraction.The findings of this study provide theoretical guidance for further modification design of Mnbased layered cathodes.展开更多
In order to advance the commercialization of rechargeable Li-air batteries,it is of importance to explore cathode catalyst with efficient catalytic activity.Transition metal oxides have poor electrical conductivity,wh...In order to advance the commercialization of rechargeable Li-air batteries,it is of importance to explore cathode catalyst with efficient catalytic activity.Transition metal oxides have poor electrical conductivity,while cobalt phosphide has excellent electrical conductivity and large specific surface area.Nevertheless,its application in organic Li-air batteries has been much less studied,and the electrocatalytic activity desires to be further elevated.Here,CoP/Co_(2)P heterojunction composite with higher polarity was fabricated.The discharge product of high-polarity CoP/Co_(2)P had a new porous box-like morphology,which was easy to be decomposed and exposed more active sites.The highly polar CoP/Co_(2)P heterostructure composite had homogeneous pores,the synergistic effect existed between CoP and Co_(2)P,and the discharge product was porous box mixed with Li_(2)O_(2)and LiOH,which made CoP/Co_(2)P achieve high specific capacity of14632 m Ah/g and cycle stably 161 times when used as air electrode cathode catalyst.This work furnished a thought for the construction of cathode catalysts with efficient catalytic activity for Li-air batteries.展开更多
Traditional O3-type Li-rich layered materials are attractive with ultra-high specific capacities,but suffering from inherent problems of voltage hysteresis and poor cycle performance.As an alternative,O2-type material...Traditional O3-type Li-rich layered materials are attractive with ultra-high specific capacities,but suffering from inherent problems of voltage hysteresis and poor cycle performance.As an alternative,O2-type materials show the potential to improve the oxygen redox reversibility and structural stability.However,their structure-performance relationship is still unclear.Here,we investigate the correlation between the Li component and dynamic chemical reversibility of O2-type Li-rich materials.By exploring the formation mechanism of a series of materials prepared by Na/Li exchange,we reveal that insufficient Li leads to an incomplete replacement,and the residual Na in the Li-layer would hinder the fast diffusion of Li^(+).Moreover,excessive Li induces the extraction of interlayer Li during the melting chemical reaction stage,resulting in a reduction in the valence of Mn,which leads to a severe Jahn-Teller effect.Structural detection confirms that the regulation of Li can improve the cycle stability of Li-rich materials and suppress the trend of voltage fading.The reversible phase evolution observed in in-situ X-ray diffraction confirms the excellent structural stability of the optimized material,which is conducive to capacity retention.This work highlights the significance of modulating dynamic electrochemical performance through the intrinsic structure.展开更多
The substitution of elements has attracted great interest to enhance the electrochemical properties of sodium-ion batteries(SIBs).Herein,the P2-Na0.67Co0.35Ti0.20Mn0.45-xLaxO2 electrode samples were prepared via a sol...The substitution of elements has attracted great interest to enhance the electrochemical properties of sodium-ion batteries(SIBs).Herein,the P2-Na0.67Co0.35Ti0.20Mn0.45-xLaxO2 electrode samples were prepared via a solid-state route.The effect of La3+substitution was researched as high-rate SIBs cathode.The Na0.67Co0.35Ti0.20Mn0.44La0.01O2 exhibits a superior initial specific capacity of 162.7 and 125.9 mA h/g after50 cycles at 0.1 C rate,and the initial specific discharge capacity of 115.2 mA h/g with 60.6%capacity retention after 100 cycles at 1 C In addition,the Na0.67Co0.35Ti0.20Mn0.44La0.01O2 sample shows an excellent rate capacity of 91.9 and 60.4 mA·h/g with 46.9%and 50.9%capacity retentions even at 8 C and 10 C rate after100 cycles,respectively.The promising La-substituted P2-type Na0.67Co0.35Ti0.20Mn0.45-xLaxO2 material provides a new strategy for designing high-rate performance of SIBs.展开更多
P2-type layered oxides are receiving significant interest due to their superior structure and intrinsic performances.There are strenuous attempts to balance the structure stability,phase transition as well as desirabl...P2-type layered oxides are receiving significant interest due to their superior structure and intrinsic performances.There are strenuous attempts to balance the structure stability,phase transition as well as desirable electrochemical performances by inducing anion/cation ions,changing morphology,adjusting valence,etc.In this work,several same-period elements of Sc,Ti,V,Cr,Fe,Cu and Zn are doped into Na_(0.50)Li_(0.08)Mn_(0.60)Co_(0.16)Ni_(0.16)O_(2)cathodes,which are manipulated by ions radii and valence state,further studied by operando X-ray powder diffraction patterns(XRD).As a result,the Cu^(2+)doped cathode performed higher rate capacities(as high as 86 mAh/g even at 10 C)and more stable structures(capacity retention of~89.4%for 100 cycles),which owing to the synergistic effect among the tightened TMO_(2)layer,enlarged d-spacing,reduce O-O electrostatic repulsion,ameliorate lattice distortion as well as mitigate ordering of Na^(+)/vacancy.展开更多
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi...Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs.展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas...P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.展开更多
Enhancing the specific capacity of P2-type layered oxide cathodes via elevating the upper operation voltage would inevitably deteriorate electrochemical properties owing to the irreversible anionic redox reaction at h...Enhancing the specific capacity of P2-type layered oxide cathodes via elevating the upper operation voltage would inevitably deteriorate electrochemical properties owing to the irreversible anionic redox reaction at high voltage.In this work,the strategy of the electron donor was utilized to address this issue.Remarkably,the earth-abundant P2-layered cathode Na_(2/3)Al_(1/6)Fe_(1/6)Mn_(2/3)O_(2)with the presence of K_(2)S renders superior rate capability(187.4 and 79.5 mA h g^(-1)at 20 and 1000 mA g^(-1))and cycling stability(a capacity retention of 85.6% over 300 cycles at 1000 mA g^(-1))within the voltage region of 2-4.4 V Na^(+)/Na.Furthermore,excellent electrochemical performance is also demonstrated in the full cell.Detailed structural analysis of as-proposed composite cathode illustrates that even at 4.4 V irreversible phase transition can be avoided as well as a cell volume variation of only 0.88%,which are attributed to the enhanced performance compared with the control group.Meanwhile,further investigation of charge compensation reveals the crucial role of sulfur ions in actively control of reversible redox reaction of oxygen species in the lattice structure.This work inspires a new strategy to enhance the structural stability of layered sodium ion cathode materials at high voltages.展开更多
The low photoelectric conversion efficiency of photoelectrode is an important factor that limits the application in photoelectrochemical cathodic protection(PECCP)field for marine anti-corrosion of metallic structures...The low photoelectric conversion efficiency of photoelectrode is an important factor that limits the application in photoelectrochemical cathodic protection(PECCP)field for marine anti-corrosion of metallic structures.In this work,a photoelectrode of TiO_(2)/CdZnS/ZnS triple-phase heterojunction was fabricated by loading the narrow-band CdZnS associated with the broad-band ZnS via hydrothermal and continuous ion layer adsorption methods,respectively.The composite of CdZnS enhances the photoelectric conversion ability of TiO_(2),while the ZnS composite can prevent the CdZnS from photo-corrosion and suppress the spillover of the photogenerated electrons.The three-phase heterostructure effectively improves the PECCP performance on 316 L stainless steel(SS)under simulated solar irradiation,especially in 3.5 wt%NaCl solution without the sacrificial agent.In addition,the prepared TiO_(2)/CdZnS/ZnS photoelectrode also performs anti-biofouling effect evidenced by the high removal efficiency of Pseudomonas aeruginosa(P.aeruginosa),which can be attributed to the oxidizability of photogenerated holes.The TiO_(2)/CdZnS/ZnS triple-phase heterojunction with desirable performance is a promising semiconductor material for the applications of PECCP and anti-biofouling.展开更多
Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches ...Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode materials for PIBs are badly absent.Herein,we synthesize K-deficient layered manganese-based oxides(P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2))and investigate them as cathode of PIBs for the first time.As the newcomer of potassium-containing layered manganese-based oxides(K_(x)MnO_(2))group,P2-K_(0.21)MnO_(2) delivers high discharge capacity of 99.3 mAh g^(-1) and P3-K_(0.23)MnO_(2) exhibits remarkable capacity retention rate of 75.5%.Besides,in-situ XRD and ex-situ XRD measurements reveal the reversible phase transition of P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2) with the potassium-ions extraction and reinsertion,respectively.This work contributes to a better understanding for the potassium storage in K-deficient layered K_(x)MnO_(2)(x≤0.23),possessing an important basic scientific significance for the exploitation and application of layered K_(x)MnO_(2) in PIBs.展开更多
The Na^(+)/vacancy ordering can effectively affect the electrochemical behavior of P2-type cathode material.In this work we proposed an integrated strategy by attaining a high Na content,In^(3+) doping in conjunction ...The Na^(+)/vacancy ordering can effectively affect the electrochemical behavior of P2-type cathode material.In this work we proposed an integrated strategy by attaining a high Na content,In^(3+) doping in conjunction with NaInO_(2) coating in the P2-Na_(0.75)Mn_(0.67)Ni_(0.33)O_(2) which can inhibit the sodium vacancy order,smooth the electrochemical curve,and enhance the structural stability and rate capability.A combination of X-ray diffraction analysis and DFT calculation indicate that the In(3+) ions in the Na layer serve as"pillars”to stabilize the layered structure,especially for high current density charging.The P2-Na_(0.75)Mn_(0.67)Ni_(0.33)In_(0.02)O_(2) with an impressive sodium content exhibits a remarkable reversible capacity of 109.6 mAh g^(-1),superior rate capability capacity of 79.8 mAh g^(-1)at 20 C,and 85%capacity retention after 100 cycles at 5 C.This work demonstrates an efficient approach for the comprehensive optimization of sodium ion cathode materials.展开更多
基金financially supported by the Australian Research Council(ARC) through the Future Fellowship(FT180100705)the financial support from China Scholarship Council+3 种基金the support from UTS-HUST Key Technology Partner Seed Fundthe support from Open Project of State Key Laboratory of Advanced Special Steel,the Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-04)the Science and Technology Commission of Shanghai Municipality(22010500400)“Joint International Laboratory on Environmental and Energy Frontier Materials”and“Innovation Research Team of High–Level Local Universities in Shanghai”in Shanghai University。
文摘The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12105372 and 51991344)President's Foundation of China Institute of Atomic Energy(Grant No.16YZ202212000201)Chinese Academy of Sciences(Grant No.XDB33000000).
文摘P2-type layered oxides have been considered as promising cathode materials for Na-ion batteries,but the capac-ity decay resulting from the Na+/vacancy ordering and phase transformation limits their future large-scale applica-tions.Herein,the impact of Li-doping in different layers on the structure and electrochemical performance of P2-type Na_(0.7)Ni_(0.35)Mn_(0.65)O_(2) is investigated.It can be found that Li ions successfully enter both the Na and transition metal layers.The strategy of Li-doping can improve the cycling stability and rate capability of P2-type layered oxides,which promotes the development of high-performance Na-ion batteries.
基金supported by National Natural Science Youth Foundation of China(No.22308294)National Natural Science Foundation of China(No.22179077)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_1868)Qing Lan Project of Jiangsu University and the Funding for school-level research projects of Yancheng Institute of Technology.
文摘Mn-based P2-type oxides are considered as promising cathodes for Na-ion batteries;however,they face significant challenges,including structural degradation when charged at high cutoff voltages and structural changes upon storing in a humid atmosphere.In response to these issues,we have designed an oxide with co-doping of Cu and Al which can balance both cost and structural stability.The redox reaction of Cu^(2+/3+)can provide certain charge compensation,and the introduction of Al can further suppress the Jahn-Teller effect of Mn,thereby achieving superior long-term cycling performance.The ex-situ XRD testing indicates that Cu/Al co-doping can effectively suppress the phase transition of P2-O2 at high voltage,thereby explaining the improvement in electrochemical performance.DFT calculations reveal a high chemical tolerance to moisture,with lower adsorption energy for H_(2)O compared to pure Na_(0.67)Cu_(0.25)Mn_(0.75)O_(2).A representative Na_(0.67)Cu_(0.20)Al_(0.05)Mn_(0.75)O_(2)cathode demonstrates impressive reversible capacities of 148.7 mAh/g at 0.2 C,along with a remarkable capacity retention of 79.1%(2 C,500 cycles).
基金the financial support provided by the Longzihu New Energy Laboratory Joint Fund of Henan Province(2023008)the Energy Storage Mater.and Processes Key Laboratory of Henan Province Open Fund(2021003)+1 种基金the Collaborative Innovation Team Project Fund of Industry-University-Research(32214085)the financial support received from Zhejiang Vast Na Technology Co.,Ltd.(24110380)。
文摘To address the challenges of air stability and slurry processability in layered transition metal oxide O_(3)-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM)for sodium-ion batteries(SIBs),we have designed an innovative 500℃reheating strategy.This method improves the surface properties of NFM without the need for additional coating layers,making it more efficient and suitable for large-scale applications.Pristine NFM(NFM-P)was first synthesized through a high-temperature solid-state method and then modified using this reheating approach(NFM-HT).This strategy significantly enhances air stability and electrochemical performance,yielding an initial discharge specific capacity of 151.46 mAh/g at 0.1C,with a remarkable capacity retention of 95.04%after 100 cycles at 0.5C.Additionally,a 1.7 Ah NFM‖HC(hard carbon)pouch cell demonstrates excellent long-term cycling stability(94.64%retention after 500 cycles at 1C),superior rate capability(86.48%retention at 9C),and strong low-temperature performance(77%retention at-25℃,continuing power supply at-40℃).Notably,even when overcharged to 8.29 V,the pouch cell remained safe without combustion or explosion.This reheating strategy,which eliminates the need for a coating layer,offers a simpler,more scalable solution for industrial production while maintaining outstanding electrochemical performance.These results pave the way for broader commercial adoption of NFM materials.
基金funded by the National Natural Science Foundation of China(No.52102252)the Natural Science Foundation of Shandong Province(No.ZR2021QB052)China Postdoctoral Science Foundation(No.2021T140268).
文摘Layered P2-type cathodes with high voltage,large capacity,and easy synthesis show great potential for developing sodium(Na)-ion batteries(NIBs).However,the P2–O2 phase transition makes their structural degradation and the Na^(+)/vacancy ordering lowers their redox kinetics.Here,we rationally propose a compositionally graded P2-type cathode,where nickel(Ni)and manganese(Mn)fractions decrease gradually,and cobalt(Co)content increases contiguously from the inside to the outside of a secondary particle.Inside these particles,the Ni/Mn-based compound delivers high capacity and high voltage.On the surface of particles,the Co/Mn-based solid solution offers a stable buffer matrix.Benefiting from these synergistic effects,this graded P2-type cathode shows the elimination of P2–O2 transformation even when charged to 4.4 V,which enables good structural stability,maintaining capacity retention reaching~80%within 300 cycles.Moreover,the Na^(+)/vacancy ordering superstructure is further suppressed,and the Na^(+)diffusion kinetics is significantly improved.The proposed graded structure with optimized chemical composition offers a new perspective for eliminating the unwanted phase transition and thus enhancing the electrochemistry of high-voltage layered cathodes for advanced NIBs.
基金financially supported by the National Natural Science Foundation of China(Nos.52372188,51902090)Henan Key Research Project Plan for Higher Education Institutions(No.23A150038)+6 种基金2023 Introduction of Studying Abroad Talent Program“111”Project(No.D17007)Henan Provincial Key Scientific Research Project of Colleges and Universities(No23A150038)Key Scientific Research Project of Education Department of Henan Province(No.22A150042)the National Students’Platform for Innovation and Entrepreneurship Training Program(No.201910476010)the China Postdoctoral Science Foundation(No.2019 M652546)the Henan Province Postdoctoral StartUp Foundation(No.1901017)。
文摘Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during insertion and removal of Na+in P_(2)-type layered transition metal oxides generate structura instability and severe capacity decay.To get rid of such a dilemma,we report a structural optimization strategy to promote P2-type layered transition metal oxides with more(010)active planes as an efficien cathode for SIBs.As a result,as-prepared hexagonal-prism P2-type layered Na_(0.71)Ni_(0.16)Li_(0.09)Co_(0.16)Mn0.6O_(2)cathode with more(010)active planes delivers a reversible capacity of 120.1 mAh/g at 0.1 C,impressive rate capability of 52.7 m Ah/g at 10 C,and long-term cycling stability(capacity retention of 95.6%ove200 cycles).The outstanding electrochemical performance benefited from the unique hexagonal-prism with more(010)active facets,which can effectively shorten the diffusion distances of Na+,increase the Na-ion migration dynamics and nanostructural stability during cycling verified by morphology character ization,Rietveld refinement,GITT,density functional theory calculations and operando XRD.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1A2C1014280)supported by the “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004)+1 种基金the Fundamental Research Program of the Korea Institute of Material Science (KIMS) (PNK9370)the calculation resources were supported by the Supercomputing Center in Korea Institute of Science and Technology Information (KISTI) (KSC-2022-CRE-0030)。
文摘The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the anionic reaction of O^(2-)/O~-to occur during Na^(+) de/intercalation.However,here,we report that the anionic redox can occur in Ru-based layered-oxide-cathodes before full oxidation of Ru^(4+)/Ru^(5+).Combining studies using first-principles calculation and experimental techniques reveals that further Na^(+) deintercalation from P2-Na_(0.33)[Mg_(0.33)Ru_(0.67)]O_(2) is based on anionic oxidation after 0.33 mol Na^(+) deintercalation from P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) with cationic oxidation of Ru^(4+)/Ru^(4.5+).Especially,it is revealed that the only oxygen neighboring 2Mg/1 Ru can participate in the anionic redox during Na^(+) de/intercalation,which implies that the Na-O-Mg arrangement in the P2-Na_(0.33)[M9_(0.33)Ru_(0.67)]O_(2) structure can dramatically lower the thermodynamic stability of the anionic redox than that of cationic redox.Through the O anionic and Ru cationic reaction,P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) exhibits not only a large specific capacity of~172 mA h g^(-1) but also excellent power-capability via facile Na^(+) diffusion and reversible structural change during charge/discharge.These findings suggest a novel strategy that can increase the activity of anionic redox by modulating the local environment around oxygen to develop high-energy-density cathode materials for NIBs.
基金supported by the National Natural Science Foundation of China(Nos.22179077,51774251,21908142)Shanghai Science and Technology Commission’s“2020 Science and Technology In-novation Action Plan”(No.20511104003)Natural Science Foundation in Shanghai(No.21ZR1424200)。
文摘The Na-deficient P3-type layered oxide cathode material usually experience complex in-plane Na^(+)/vacancy ordering rearrangement and undesirable P3-O3 phase transitions in the high-voltage region,leading to inferior cycling performance.Additionally,they exhibit unsatisfactory stability when exposed to water for extended periods.To address these challenges,we propose a Cu/Ti co-doped P3-type cathode material(Na_(0.67)Ni_(0.3)Cu_(0.03)Mn_(0.6)Ti_(0.07)O_(2)),which effectively mitigates Na^(+)/vacancy ordering and suppresses P3-O3 phase transitions at high voltages.As a result,the as-prepared sample exhibited outstanding cyclic performance,with 81.9%retention after 500 cycles within 2.5–4.15 V,and 75.7%retention after300 cycles within 2.5–4.25 V.Meanwhile,it demonstrates enhanced Na^(+)transport kinetics during desodiation/sodiation and reduced growth of charge transfer impedance(R_(ct))after various cycles.Furthermore,the sample showed superb stability against water,exhibiting no discernible degradation in structure,morphology,or electrochemical performance.This co-doping strategy provides new insights for innovative and prospective cathode materials.
基金supported by the Natural Science Research Project of Anhui Province Education Department(No.2022AH050334)the Scientific Research Foundation of Anhui University of Technology for Talent Introduction(No.DT2200001211)the New Energy Electric Vehicles High-Voltage Components Inspection and Testing Public Service Platform。
文摘Mn-based layered oxides are among the most promising cathode materials for sodium-ion batteries owing to the advantages of abundance,environmenta friendliness,low cost and high specific capacity.P2 and O'3 are two representative structures of Mn-based layered oxides.However,the P2 structure containing insufficien Na generally exhibits low initial charge capacity,while O'3structure with sufficient Na delivers high initial charge capacity but poor cycle stability.This study prepared a multitude of Na_(x)MnO_(2)(x=0.7,0.8,0.9)cathode materials with varying P2/O'3 ratios and further investigated their electrochemical performances.The optimized Na_(0.8)MnO_(2) comprising 69.9 wt%O'3 and 30.1 wt%P2 phase,exhibited relatively balanced specific capacity,Coulombic efficiency and cycle stability.Specifically,it achieved a high specific capacity of 128.9 mAh·g^(-1) with an initia Coulombic efficiency of 98.2%in half-cell configuration The Na_(0.8)MnO_(2)//hard carbon full cell also achieved a high specific capacity of 126.7 mAh·g^(-1) with an initia Coulombic efficiency of 98.9%.Moreover,the capacity fading mechanism was revealed by combining in-situ and ex-situ X-ray diffraction.The findings of this study provide theoretical guidance for further modification design of Mnbased layered cathodes.
基金supported by the National Science Foundations of China(Nos.21871028,22271018)。
文摘In order to advance the commercialization of rechargeable Li-air batteries,it is of importance to explore cathode catalyst with efficient catalytic activity.Transition metal oxides have poor electrical conductivity,while cobalt phosphide has excellent electrical conductivity and large specific surface area.Nevertheless,its application in organic Li-air batteries has been much less studied,and the electrocatalytic activity desires to be further elevated.Here,CoP/Co_(2)P heterojunction composite with higher polarity was fabricated.The discharge product of high-polarity CoP/Co_(2)P had a new porous box-like morphology,which was easy to be decomposed and exposed more active sites.The highly polar CoP/Co_(2)P heterostructure composite had homogeneous pores,the synergistic effect existed between CoP and Co_(2)P,and the discharge product was porous box mixed with Li_(2)O_(2)and LiOH,which made CoP/Co_(2)P achieve high specific capacity of14632 m Ah/g and cycle stably 161 times when used as air electrode cathode catalyst.This work furnished a thought for the construction of cathode catalysts with efficient catalytic activity for Li-air batteries.
基金the National Natural Science Foundation of China(21673064 and 51902072)the Heilongjiang Touyan Team(HITTY-20190033)+2 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2019040 and 2019041)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(2020 DX11)the Heilongjiang postdoctoral financial assistance(LBH-Z19055)。
文摘Traditional O3-type Li-rich layered materials are attractive with ultra-high specific capacities,but suffering from inherent problems of voltage hysteresis and poor cycle performance.As an alternative,O2-type materials show the potential to improve the oxygen redox reversibility and structural stability.However,their structure-performance relationship is still unclear.Here,we investigate the correlation between the Li component and dynamic chemical reversibility of O2-type Li-rich materials.By exploring the formation mechanism of a series of materials prepared by Na/Li exchange,we reveal that insufficient Li leads to an incomplete replacement,and the residual Na in the Li-layer would hinder the fast diffusion of Li^(+).Moreover,excessive Li induces the extraction of interlayer Li during the melting chemical reaction stage,resulting in a reduction in the valence of Mn,which leads to a severe Jahn-Teller effect.Structural detection confirms that the regulation of Li can improve the cycle stability of Li-rich materials and suppress the trend of voltage fading.The reversible phase evolution observed in in-situ X-ray diffraction confirms the excellent structural stability of the optimized material,which is conducive to capacity retention.This work highlights the significance of modulating dynamic electrochemical performance through the intrinsic structure.
文摘The substitution of elements has attracted great interest to enhance the electrochemical properties of sodium-ion batteries(SIBs).Herein,the P2-Na0.67Co0.35Ti0.20Mn0.45-xLaxO2 electrode samples were prepared via a solid-state route.The effect of La3+substitution was researched as high-rate SIBs cathode.The Na0.67Co0.35Ti0.20Mn0.44La0.01O2 exhibits a superior initial specific capacity of 162.7 and 125.9 mA h/g after50 cycles at 0.1 C rate,and the initial specific discharge capacity of 115.2 mA h/g with 60.6%capacity retention after 100 cycles at 1 C In addition,the Na0.67Co0.35Ti0.20Mn0.44La0.01O2 sample shows an excellent rate capacity of 91.9 and 60.4 mA·h/g with 46.9%and 50.9%capacity retentions even at 8 C and 10 C rate after100 cycles,respectively.The promising La-substituted P2-type Na0.67Co0.35Ti0.20Mn0.45-xLaxO2 material provides a new strategy for designing high-rate performance of SIBs.
基金financially supported by the National Natural Science Foundation of China(Nos.52263010,51902090)Henan Key Research Project Plan for Higher Education Institutions(No.23A150038)+5 种基金2023 Introduction of studying abroad talent program,“"111"Project(No.D17007)Henan Provincial Key Scientific Research Project of Colleges and Universities(No.23A150038)Key Scientific Research Project of Education Department of Henan Province(No.22A150042)the National students'platform for innovation and entrepreneurship training program(No.201910476010)the China Postdoctoral Science Foundation(No.2019 M652546)the Henan Province Postdoctoral Start-Up Foundation(No.1901017).
文摘P2-type layered oxides are receiving significant interest due to their superior structure and intrinsic performances.There are strenuous attempts to balance the structure stability,phase transition as well as desirable electrochemical performances by inducing anion/cation ions,changing morphology,adjusting valence,etc.In this work,several same-period elements of Sc,Ti,V,Cr,Fe,Cu and Zn are doped into Na_(0.50)Li_(0.08)Mn_(0.60)Co_(0.16)Ni_(0.16)O_(2)cathodes,which are manipulated by ions radii and valence state,further studied by operando X-ray powder diffraction patterns(XRD).As a result,the Cu^(2+)doped cathode performed higher rate capacities(as high as 86 mAh/g even at 10 C)and more stable structures(capacity retention of~89.4%for 100 cycles),which owing to the synergistic effect among the tightened TMO_(2)layer,enlarged d-spacing,reduce O-O electrostatic repulsion,ameliorate lattice distortion as well as mitigate ordering of Na^(+)/vacancy.
基金supported by a grant from the Subway Fine Dust Reduction Technology Development Project of the Ministry of Land Infrastructure and Transport,Republic of Korea(21QPPWB152306-03)the Basic Science Research Capacity Enhancement Project through a Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education of the Republic of Korea(2019R1A6C1010016)。
文摘Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs.
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
基金supported by the National Natural Science Foundation of China (22169002)the Chongzuo Key Research and Development Program of China (20220603)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)
文摘P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.
基金funding support from the Beijing Natural Science Foundation(2252055)National Natural Science Foundation of China(52072033)BIT Research and Innovation Promoting Project(2024YCXY040,GIIP2023-34)。
文摘Enhancing the specific capacity of P2-type layered oxide cathodes via elevating the upper operation voltage would inevitably deteriorate electrochemical properties owing to the irreversible anionic redox reaction at high voltage.In this work,the strategy of the electron donor was utilized to address this issue.Remarkably,the earth-abundant P2-layered cathode Na_(2/3)Al_(1/6)Fe_(1/6)Mn_(2/3)O_(2)with the presence of K_(2)S renders superior rate capability(187.4 and 79.5 mA h g^(-1)at 20 and 1000 mA g^(-1))and cycling stability(a capacity retention of 85.6% over 300 cycles at 1000 mA g^(-1))within the voltage region of 2-4.4 V Na^(+)/Na.Furthermore,excellent electrochemical performance is also demonstrated in the full cell.Detailed structural analysis of as-proposed composite cathode illustrates that even at 4.4 V irreversible phase transition can be avoided as well as a cell volume variation of only 0.88%,which are attributed to the enhanced performance compared with the control group.Meanwhile,further investigation of charge compensation reveals the crucial role of sulfur ions in actively control of reversible redox reaction of oxygen species in the lattice structure.This work inspires a new strategy to enhance the structural stability of layered sodium ion cathode materials at high voltages.
基金financially supported by the Natural Science Foundation of Shandong(No.ZR2021MD002)the National Natural Science Foundation of China(Nos.42106051 and U2106206).
文摘The low photoelectric conversion efficiency of photoelectrode is an important factor that limits the application in photoelectrochemical cathodic protection(PECCP)field for marine anti-corrosion of metallic structures.In this work,a photoelectrode of TiO_(2)/CdZnS/ZnS triple-phase heterojunction was fabricated by loading the narrow-band CdZnS associated with the broad-band ZnS via hydrothermal and continuous ion layer adsorption methods,respectively.The composite of CdZnS enhances the photoelectric conversion ability of TiO_(2),while the ZnS composite can prevent the CdZnS from photo-corrosion and suppress the spillover of the photogenerated electrons.The three-phase heterostructure effectively improves the PECCP performance on 316 L stainless steel(SS)under simulated solar irradiation,especially in 3.5 wt%NaCl solution without the sacrificial agent.In addition,the prepared TiO_(2)/CdZnS/ZnS photoelectrode also performs anti-biofouling effect evidenced by the high removal efficiency of Pseudomonas aeruginosa(P.aeruginosa),which can be attributed to the oxidizability of photogenerated holes.The TiO_(2)/CdZnS/ZnS triple-phase heterojunction with desirable performance is a promising semiconductor material for the applications of PECCP and anti-biofouling.
基金support from the Key Project of Guangdong Province Nature Science Foundation (No. 2017B030311013)the Scientific and Technological Plan of Guangdong Province, Guangzhou and Qingyuan City, China (Nos. 2019B090905005, 2019B090911004, 2017B020227009, 2019DZX008, 2019A004)+2 种基金the financial support from the National Key R&D Program of China (2018YFB1502600)the National Natural Science Foundation of China (No. 51922042 and 51872098)the Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510700, China.
文摘Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode materials for PIBs are badly absent.Herein,we synthesize K-deficient layered manganese-based oxides(P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2))and investigate them as cathode of PIBs for the first time.As the newcomer of potassium-containing layered manganese-based oxides(K_(x)MnO_(2))group,P2-K_(0.21)MnO_(2) delivers high discharge capacity of 99.3 mAh g^(-1) and P3-K_(0.23)MnO_(2) exhibits remarkable capacity retention rate of 75.5%.Besides,in-situ XRD and ex-situ XRD measurements reveal the reversible phase transition of P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2) with the potassium-ions extraction and reinsertion,respectively.This work contributes to a better understanding for the potassium storage in K-deficient layered K_(x)MnO_(2)(x≤0.23),possessing an important basic scientific significance for the exploitation and application of layered K_(x)MnO_(2) in PIBs.
基金supported by the National Natural Science Foundation of China (22179077, 51774251)the Shanghai Science and Technology Commission’s “2020 Science and Technology Innovation Action Plan” (20511104003)+2 种基金the Natural Science Foundation in Shanghai (21ZR1424200)the Hebei Natural Science Foundation for Distinguished Young Scholars (B2017203313)the Scientific Research Foundation for the Returned Overseas Chinese Scholars (CG2014003002)。
文摘The Na^(+)/vacancy ordering can effectively affect the electrochemical behavior of P2-type cathode material.In this work we proposed an integrated strategy by attaining a high Na content,In^(3+) doping in conjunction with NaInO_(2) coating in the P2-Na_(0.75)Mn_(0.67)Ni_(0.33)O_(2) which can inhibit the sodium vacancy order,smooth the electrochemical curve,and enhance the structural stability and rate capability.A combination of X-ray diffraction analysis and DFT calculation indicate that the In(3+) ions in the Na layer serve as"pillars”to stabilize the layered structure,especially for high current density charging.The P2-Na_(0.75)Mn_(0.67)Ni_(0.33)In_(0.02)O_(2) with an impressive sodium content exhibits a remarkable reversible capacity of 109.6 mAh g^(-1),superior rate capability capacity of 79.8 mAh g^(-1)at 20 C,and 85%capacity retention after 100 cycles at 5 C.This work demonstrates an efficient approach for the comprehensive optimization of sodium ion cathode materials.