期刊文献+
共找到6,873篇文章
< 1 2 250 >
每页显示 20 50 100
Managing cotton canopy architecture for machine picking cotton via high plant density and plant growth retardants 被引量:1
1
作者 LAKSHMANAN Sankar SOMASUNDARAM Selvaraj +4 位作者 SHRI RANGASAMI Silambiah ANANTHARAJU Pokkharu VIJAYALAKSHMI Dhashnamurthi RAGAVAN Thiruvengadam DHAMODHARAN Paramasivam 《Journal of Cotton Research》 2025年第1期102-114,共13页
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti... Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity. 展开更多
关键词 COTTON High density planting system Plant growth retardant Canopy management Defoliators Machine picking Yield improvement
在线阅读 下载PDF
Intelligent phase picking of microseismic signals based on ResUNet in underground engineering
2
作者 OU Li-yuan HUANG Lin-qi +3 位作者 ZHAO Yun-ge WANG Zhao-wei SHEN Hui-ming LI Xi-bing 《Journal of Central South University》 2025年第9期3314-3335,共22页
With the continuous expansion of deep underground engineering and the growing demand for safety monitoring,microseismic monitoring has become a core method for early warning of rock mass fracture and engineering stabi... With the continuous expansion of deep underground engineering and the growing demand for safety monitoring,microseismic monitoring has become a core method for early warning of rock mass fracture and engineering stability assessment.To address problems in existing methods,such as low data processing efficiency and poor phase recognition accuracy under low signal-to-noise ratio(SNR)conditions in complex geological environments,this study proposes an intelligent phase picking model based on ResUNet.The model integrates the residual learning mechanism of ResNet with the multi-scale feature extraction capability of UNet,effectively mitigating the vanishing gradient problem in deep networks.It also achieves cross-layer fusion of shallow detail features and deep semantic features through skip connections in the encoder-decoder structure.Compared with traditional short-time average/long-time average(STA/LTA)algorithms and advanced neural network models such as PhaseNet and EQTransformer,ResUNet shows superior performance in picking P-and S-wave phases.The model was trained on 400000 labeled microseismic signals from the Stanford earthquake dataset(STEAD)and was successfully applied to the Shizhuyuan polymetallic mine in Hunan Province,China.The results demonstrate that ResUNet achieves high picking accuracy and robustness in complex geological conditions,offering reliable technical support for early warning of disasters such as rockburst in deep underground engineering. 展开更多
关键词 underground engineering microseismic monitoring phase picking deep learning ResUNet architecture rock fracture early warning
在线阅读 下载PDF
Applying deep learning to teleseismic phase detection and picking:PcP and PKiKP cases
3
作者 Congcong Yuan Jie Zhang 《Artificial Intelligence in Geosciences》 2025年第1期25-32,共8页
The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking ... The availability of a tremendous amount of seismic data demands seismological researchers to analyze seismic phases efficiently.Recently,deep learning algorithms exhibit a powerful capability of detecting and picking on P-and S-wave phases.However,it remains a challenge to effeciently process enormous teleseismic phases,which are crucial to probe Earth’s interior structures and their dynamics.In this study,we propose a scheme to detect and pick teleseismic phases,such as seismic phase that reflects off the core-mantle boundary(i.e.,PcP)and that reflects off the inner-core boundary(i.e.,PKiKP),from a seismic dataset in Japan.The scheme consists of three steps:1)latent phase traces are truncated from the whole seismogram with theoretical arrival times;2)latent phases are recognized and evaluated by convolutional neural network(CNN)models;3)arrivals of good or fair phase are picked with another CNN models.The testing detection result on 7386 seismograms shows that the scheme recognizes 92.15%and 94.13%of PcP and PKiKP phases.The testing picking result has a mean absolute error of 0.0742 s and 0.0636 s for the PcP and PKiKP phases,respectively.These seismograms were processed in just 5 min for phase detection and picking,demonstrating the efficiency of the proposed scheme in automatic teleseismic phase analysis. 展开更多
关键词 Earth’s interior Teleseismic phases Phase detection Phase picking Deep learning
在线阅读 下载PDF
Real-time arrival picking of rock microfracture signals based on convolutional-recurrent neural network and its engineering application 被引量:3
4
作者 Bing-Rui Chen Xu Wang +2 位作者 Xinhao Zhu Qing Wang Houlin Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期761-777,共17页
Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current... Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current arrival picking methods.Thus,a real-time arrival picking method of MS signals is constructed based on a convolutional-recurrent neural network(CRNN).This method fully utilizes the advantages of convolutional layers and gated recurrent units(GRU)in extracting short-and long-term features,in order to create a precise and lightweight arrival picking structure.Then,the synthetic signals with field noises are used to evaluate the hyperparameters of the CRNN model and obtain an optimal CRNN model.The actual operation on various devices indicates that compared with the U-Net method,the CRNN method achieves faster arrival picking with less performance consumption.An application of large underground caverns in the Yebatan hydropower station(YBT)project shows that compared with the short-term average/long-term average(STA/LTA),Akaike information criterion(AIC)and U-Net methods,the CRNN method has the highest accuracy within four sampling points,which is 87.44%for P-wave and 91.29%for S-wave,respectively.The sum of mean absolute errors(MAESUM)of the CRNN method is 4.22 sampling points,which is lower than that of the other methods.Among the four methods,the MS sources location calculated based on the CRNN method shows the best consistency with the actual failure,which occurs at the junction of the shaft and the second gallery.Thus,the proposed method can pick up P-and S-arrival accurately and rapidly,providing a reference for rock failure analysis and evaluation in engineering applications. 展开更多
关键词 Rock mass failure Microseismic event p-wave arrival S-wave arrival Deep learning
在线阅读 下载PDF
Automatic velocity picking based on optimal key points tracking algorithm 被引量:1
5
作者 Yong-Hao Wang Wen-Kai Lu +3 位作者 Song-Bai Jin Yang Li Yu-Xuan Li Xiao-Feng Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期903-917,共15页
Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating... Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating information from nearby gathers to ensure picked velocity aligns with seismic horizons while also improving picking accuracy. The conventional method of velocity picking from a semblance volume is computationally demanding, highlighting a need for a more efficient strategy. In this study, we introduce a novel method for automatic velocity picking based on multi-object tracking. This dynamic tracking process across different semblance panels can integrate information from nearby gathers effectively while maintaining computational efficiency. First, we employ accelerated density clustering on the velocity spectrum to discern cluster centers without the requirement for prior knowledge regarding the number of clusters. These cluster centers embody the maximum likelihood velocities of the main subsurface structures. Second, our proposed method tracks key points within the semblance volume. Kalman filter is adopted to adjust the tracking process, followed by interpolation on these tracked points to construct the final velocity model. Our synthetic data example demonstrates that our proposed algorithm can effectively rectify the picking errors of the clustering algorithm. We further compare the performances of the clustering method(CM), the proposed tracking method(TM), and the variational method(VM) on a field dataset from the Gulf of Mexico. The results attest that our method offers superior accuracy than CM, achieves comparable accuracy with VM, and benefits from a reduced computational cost. 展开更多
关键词 Velocity picking Multi-object tracking Density clustering Kalman filter
原文传递
Deep learning for P-wave arrival picking in earthquake early warning 被引量:9
6
作者 Wang Yanwei Li Xiaojun +2 位作者 Wang Zifa Shi Jianping Bao Enhe 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期391-402,共12页
Fast and accurate P-wave arrival picking significantly affects the performance of earthquake early warning(EEW)systems.Automated P-wave picking algorithms used in EEW have encountered problems of falsely picking up no... Fast and accurate P-wave arrival picking significantly affects the performance of earthquake early warning(EEW)systems.Automated P-wave picking algorithms used in EEW have encountered problems of falsely picking up noise,missing P-waves and inaccurate P-wave arrival estimation.To address these issues,an automatic algorithm based on the convolution neural network(DPick)was developed,and trained with a moderate number of data sets of 17,717 accelerograms.Compared to the widely used approach of the short-term average/long-term average of signal characteristic function(STA/LTA),DPick is 1.6 times less likely to detect noise as a P-wave,and 76 times less likely to miss P-waves.In terms of estimating P-wave arrival time,when the detection task is completed within 1 s,DPick′s detection occurrence is 7.4 times that of STA/LTA in the 0.05 s error band,and 1.6 times when the error band is 0.10 s.This verified that the proposed method has the potential for wide applications in EEW. 展开更多
关键词 p-wave arrival convolution neural network deep learning earthquake early warning
在线阅读 下载PDF
Active Source Seismic Identification and Automatic Picking of the P-wave First Arrival Using a Convolutional Neural Network 被引量:3
7
作者 XU Zhen WANG Tao +4 位作者 XU Shanhui WANG Baoshan FENG Xuping SHI Jing YANG Minghan 《Earthquake Research in China》 CSCD 2019年第2期288-304,共17页
In seismic data processing,picking of the P-wave first arrivals takes up plenty of time and labor,and its accuracy plays a key role in imaging seismic structures.Based on the convolution neural network(CNN),we propose... In seismic data processing,picking of the P-wave first arrivals takes up plenty of time and labor,and its accuracy plays a key role in imaging seismic structures.Based on the convolution neural network(CNN),we propose a new method to pick up the P-wave first arrivals automatically.Emitted from MINI28 vibroseis in the Jingdezhen seismic experiment,the vertical component of seismic waveforms recorded by EPS 32-bit portable seismometers are used for manually picking up the first arrivals(a total of 7242).Based on these arrivals,we establish the training and testing sets,including 25,290 event samples and 710,616 noise samples(length of each sample:2 s).After 3,000 steps of training,we obtain a convergent CNN model,which can automatically classify seismic events and noise samples with high accuracy(>99%).With the trained CNN model,we scan continuous seismic records and take the maximum output(probability of a seismic event)as the P-wave first arrival time.Compared with STA/LTA(short time average/long time average),our method shows higher precision and stronger anti-noise ability,especially with the low SNR seismic data.This CNN method is of great significance for promoting the intellectualization of seismic data processing,improving the resolution of seismic imaging,and promoting the joint inversion of active and passive sources. 展开更多
关键词 CNN Active source SEISMIC identification FIRST ARRIVAL picking ANTI-NOISE ability
在线阅读 下载PDF
A regression approach for seismic first-break picking
8
作者 Huan Yuan San-Yi Yuan +2 位作者 Jie Wu Wen-Jing Sang Yu-He Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1584-1596,共13页
The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-nois... The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-noise ratio(SNR)situations.To address this issue,we propose a regression approach to pick FBs based on bidirectional long short-term memory(Bi LSTM)neural network by learning the implicit Eikonal equation of 3D inhomogeneous media with rugged topography in the target region.We employ a regressive model that represents the relationships among the elevation of shots,offset and the elevation of receivers with their seismic traveltime to predict the unknown FBs,from common-shot gathers with sparsely distributed traces.Different from image segmentation methods which automatically extract image features and classify FBs from seismic data,the proposed method can learn the inner relationship between field geometry and FBs.In addition,the predicted results by the regressive model are continuous values of FBs rather than the discrete ones of the binary distribution.The picking results of synthetic data shows that the proposed method has low dependence on label data,and can obtain reliable and similar predicted results using two types of label data with large differences.The picking results of9380 shots for 3D seismic data generated by vibroseis indicate that the proposed method can still accurately predict FBs in low SNR data.The subsequent stacked profiles further illustrate the reliability and effectiveness of the proposed method.The results of model data and field seismic data demonstrate that the proposed regression method is a robust first-break picker with high potential for field application. 展开更多
关键词 First-break picking Low signal-to-noiseratio Regression BiLSTM TRAVELTIME Geometry Noisy seismic data
原文传递
First-Arrival Picking Method for Active Source Data with Ocean Bottom Seismometers Based on Spatial Waveform Variation Characteristics
9
作者 LIU Hongwei XING Lei +3 位作者 ZHU Henghua ZHANG Jin ZHANG Jing LIU Huaishan 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期970-980,共11页
The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods fo... The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods for first-arrival picking based on sample points are characterized by theoretical errors,especially in low-sampling-frequency OBS data because the travel time of seismic waves is not an integer multiple of the sampling interval.In this paper,a first-arrival picking method that utilizes the spatial waveform variation characteristics of active source OBS data is presented.First,the distribution law of theoretical error is examined;adjacent traces exhibit variation characteristics in their waveforms.Second,a label cross-correlation superposition method for extracting highfrequency signals is presented to enhance the first-arrival picking precision.Results from synthetic and field data verify that the proposed approach is robust,successfully overcomes the limitations of low sampling frequency,and achieves precise outcomes that are comparable with those of high-sampling-frequency data. 展开更多
关键词 first-arrival picking spatial waveform variation label cross-correlation superposition method
在线阅读 下载PDF
Manual Order Picking Route Optimization in Distribution Warehouse of Chain Furniture Retail Enterprise
10
作者 Yongzhen Zeng Junkun Wang +1 位作者 Ching-Kuei Kao King-Zoo Tang 《American Journal of Operations Research》 2024年第3期105-136,共32页
Due to the effects of the COVID-19 pandemic and the rise of online shopping, the offline sales of IKEA Fuzhou have been declining since 2020. Because the cost of distribution warehouse is a major expense for offline c... Due to the effects of the COVID-19 pandemic and the rise of online shopping, the offline sales of IKEA Fuzhou have been declining since 2020. Because the cost of distribution warehouse is a major expense for offline chain furniture retailers, and the picking process is a key activity in distribution warehouse operations. To reduce the cost of distribution warehouse and alleviate the survival pressure of the offline chain furniture retailers, this paper focuses on optimizing the picking route of the IKEA Fuzhou distribution warehouse. It starts by creating a two-dimensional coordinate system for the storage location of the distribution warehouse using the traditional S-type picking strategy to calculate the distance and time of the sorting route. Then, the problem of optimizing the picking route is then transformed into the travelling salesman problem (TSP), and picking route optimization model is developed using a genetic algorithm to analyze the sorting efficiency and picking route optimization. Results show that the order-picking route using the genetic algorithm strategy is significantly better than the traditional S-type picking strategy, which can improve overall sorting efficiency and operations, reduce costs, and increase efficiency. Thus, this establishes an implementation process for the order-picking path based on genetic algorithm optimization to improve overall sorting efficiency and operations, reduce costs, increase efficiency, and alleviate the survival pressure of pandemic-affected enterprises. 展开更多
关键词 S-Shaped picking Strategy picking Route Traveling Salesman Problem Genetic Algorithm
在线阅读 下载PDF
Tea Image Recognition and Research on Structure of Tea Picking End-Effector
11
作者 Biao Huang Shiping Zou 《Journal of Electronics Cooling and Thermal Control》 2024年第3期51-60,共10页
The automated picking technology of tea is an important part of the development of smart agriculture, which affects the development of the tea industry to a certain extent. Tea leaf recognition and robotic tea picking... The automated picking technology of tea is an important part of the development of smart agriculture, which affects the development of the tea industry to a certain extent. Tea leaf recognition and robotic tea picking end-effector are the key technologies for automated tea picking. This paper proposes a set of algorithms for tea leaf differentiation and recognition based on the principle of colour difference. And on the basis of this algorithm, a tea picking end-effector is designed. The experiments show that the designed tea picking end-effector has good recognition ability and high tea picking speed. 展开更多
关键词 Image Recognition of Tea Leaves Tea picking End-Effector Tea pickingStructure Design
在线阅读 下载PDF
Basic Research on the Burden of Dropping off and Picking up Children: Differences by Employment Type and Gender in the Tokyo Metropolitan Area
12
作者 Jun Morio Koshi Isono +1 位作者 Masahiko Kikuchi Tetsuo Morita 《Journal of Transportation Technologies》 2024年第3期445-461,共17页
There is a need to reduce the burden of child drop-off and pick-up for child-rearing generations, but most studies on the actual situation in Japan are based on survey results. In this study, we analyzed differences i... There is a need to reduce the burden of child drop-off and pick-up for child-rearing generations, but most studies on the actual situation in Japan are based on survey results. In this study, we analyzed differences in child drop-off and pick-up by employment type and gender, utilizing the “Metropolitan Area Person Trip Survey,” which is a statistical data set. The study targeted households in which both spouses were between 30 and 49 years old, had children under the age of 6, and included the following three groups. 1) Dual-income Group 1 (both spouses employed/on contract/temporary);2) Dual-income Group 2 (husband employed/on contract/temporary, wife part-time);3) Full-time housewife group (husband employed, wife unemployed). The analysis revealed that a) wives are almost always responsible for dropping off and picking up their children;b) husbands drop off and pick up their children less frequently in dual-income households;and c) households with children raising within 10 to 30 km of Tokyo Station have longer commuting times and need to reduce the burden of dropping off and picking up their children. 展开更多
关键词 Drop-Off and pick-Up Employment Type GENDER Dual-Income Households Tokyo Metropolitan Area
暂未订购
Metallogenic environment in central southern Tanlu Fault revealed by P-wave tomography
13
作者 Ya SUN Zi-jun YUAN +3 位作者 Ji-wen HUANG Jian-tai ZHANG Fu-quan LI Jian-xin LIU 《Transactions of Nonferrous Metals Society of China》 2025年第9期3108-3119,共12页
A P-wave velocity model was built in the central southern of the Tanlu Fault based on double-difference tomography.The results suggest the presence of a low-velocity anomaly extending from the surface to a depth of 25... A P-wave velocity model was built in the central southern of the Tanlu Fault based on double-difference tomography.The results suggest the presence of a low-velocity anomaly extending from the surface to a depth of 25 km around the Tanlu and Feixi Faults,representing fault-related fluids caused by partial melting.The relocated earthquakes indicate a significant concentration of seismic activity above 20 km around the Tanlu and Feixi Faults,suggesting that prominent fault systems possibly serve as conduits for the upward migration of deep minerals.The proposed geodynamic model,supported by geological and geophysical data,suggests that the migration of deep mineralized materials extends along the Tanlu Fault.The obtained results serve as a crucial foundation for elucidating the intricate process of mineralization in the central southern segment of the Tanlu Fault,thereby enhancing comprehension regarding the interaction among ore body formation,fault fluids,localized melting,and seismic activity. 展开更多
关键词 central southern Tanlu Fault double-difference tomography MINERALIZATION partial melting p-wave velocity
在线阅读 下载PDF
Strength prediction and cuttability identification of rock based on monitoring while cutting(MWC)using a conical pick
14
作者 Shaofeng Wang Yumeng Wu +2 位作者 Xinlei Shi Xin Cai Zilong Zhou 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1025-1043,共19页
Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ mod... Real-time identification of rock strength and cuttability based on monitoring while cutting during excavation is essential for key procedures such as the precise adjustment of excavation parameters and the in-situ modification of hard rocks.This study proposes an in-telligent approach for predicting rock strength and cuttability.A database comprising 132 data sets is established,containing cutting para-meters(such as cutting depth and pick angle),cutting responses(such as specific energy and instantaneous cutting rate),and rock mech-anical parameters collected from conical pick-cutting experiments.These parameters serve as input features for predicting the uniaxial compressive strength and tensile strength of rocks using regression fitting and machine learning methodologies.In addition,rock cuttabil-ity is classified using a combination of the analytic hierarchy process and fuzzy comprehensive evaluation method,and subsequently iden-tified through machine learning approaches.Various models are compared to determine the optimal predictive and classification models.The results indicate that the optimal model for uniaxial compressive strength and tensile strength prediction is the genetic algorithm-optimized backpropagation neural network model,and the optimal model for rock cuttability classification is the radial basis neural network model. 展开更多
关键词 conical picks strength prediction cuttability identification machine learning monitoring while cutting
在线阅读 下载PDF
Water-induced changes in mechanical response and fragmentation behavior of rocks exposed to conical pick indentation:Implications for rock cuttability improvement
15
作者 Xin Cai Jifeng Yuan +5 位作者 Zilong Zhou Shaofeng Wang Yunming Wang Jixiong Zhang Dan Ma Lu Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5465-5478,共14页
Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock ... Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock samples.A series of rock-cutting tests using conical pick indentation was conducted on three types of sandstone samples under both dry and water-saturated conditions.The relationships between cutting force and indentation depth,as well as typical cuttability indices are determined and compared for dry and water-saturated samples.The experimental results reveal that the presence of water facilitates shearing failure in rock samples,as well as alleviates the fluctuations in the cutting force-indentation depth curve Furthermore,the peak cutting force(F_(p)),cutting work(W_(p)),and specific energy(SE)undergo apparent decrease after water saturation,whereas the trend in the indentation depth at rock failure(D_(f))varies across different rock types.Additionally,the water-induced percentage reductions in F_(p)and SE correlate positively with the quartz and swelling clay content within the rocks,suggesting that the cuttability improvement due to water saturation is attributed to the combined effects of stress corrosion and frictional reduction.These findings carry significant implications for improving rock cuttability in mechanized excavation of hard rock formations. 展开更多
关键词 Rock-cutting Water-weakening effects Conical pick Peak cutting force Specific energy Rock cuttability improvement
在线阅读 下载PDF
Metaheuristic multi-objective optimization-based microseismic source location approach with anisotropic P-wave velocity field
16
作者 Xin Yin Feng Gao +3 位作者 Honggan Yu Yucong Pan Quansheng Liu He Liu 《Deep Resources Engineering》 2025年第1期38-53,共16页
Rockburst is a common dynamic geological hazard,frequently occurring in underground engineering(e.g.,TBM tunnelling and deep mining).In order to achieve rockburst monitoring and warning,the microseismic moni-toring te... Rockburst is a common dynamic geological hazard,frequently occurring in underground engineering(e.g.,TBM tunnelling and deep mining).In order to achieve rockburst monitoring and warning,the microseismic moni-toring technique has been widely used in the field.However,the microseismic source location has always been a challenge,playing a vital role in the precise prevention and control of rockburst.To this end,this study proposes a novel microseismic source location model that considers the anisotropy of P-wave velocity.On the one hand,it assigns a unique P-wave velocity to each propagation path,abandoning the assumption of a homogeneous ve-locity field.On the other hand,it treats the P-wave velocity as a co-inversion parameter along with the source location,avoiding the predetermination of P-wave velocity.To solve this model,three various metaheuristic multi-objective optimization algorithms are integrated with it,including the whale optimization algorithm,the butterfly optimization algorithm,and the sparrow search algorithm.To demonstrate the advantages of the model in terms of localization accuracy,localization efficiency,and solution stability,four blasting cases are collected from a water diversion tunnel project in Xinjiang,China.Finally,the effect of the number of involved sensors on the microseismic source location is discussed. 展开更多
关键词 Underground engineering Microseismic monitoring Microseismic source location p-wave velocity anisotropy Metaheuristic multi-objective optimization
在线阅读 下载PDF
Landscape Design of Sightseeing and Picking Garden Transformed from Vegetable Producing Garden 被引量:1
17
作者 孙明德 曹均 《Journal of Landscape Research》 2011年第5期4-7,共4页
In view of landscape design problems in the transition from vegetable producing garden to sightseeing and picking garden,definitions of both gardens were introduced and discriminated.It was proposed that landscapes in... In view of landscape design problems in the transition from vegetable producing garden to sightseeing and picking garden,definitions of both gardens were introduced and discriminated.It was proposed that landscapes in the vegetable sightseeing and picking garden included installations,open-field vegetable producing landscapes and overall environment landscapes.Landscape design concepts and principles of vegetable sightseeing and picking garden were analyzed,and it was stressed that its landscape design should take quality production of vegetables and fruits as the principal line,environment landscapes of the garden as the support,and experiencing production process as the feature,by following the principles of "integrity of garden design,characteristic vegetable varieties,proper crop rotation,ecological production process".Landscape contents of this garden were analyzed from 3 perspectives:landscape design within installations,major road,and overall appearance of the garden.Cangshang Vegetable Sightseeing and Picking Garden in Beiwu Township,Shunyi District,Beijing City was taken for an example to analyze its landscape construction inside and outside greenhouses as well as the optimization of the overall environment landscapes on the basis of introducing its landscape design concepts. 展开更多
关键词 VEGETABLE GARDEN SIGHTSEEING and picking LANDSCAPE DESIGN
在线阅读 下载PDF
Perfect Pick系统订单拣选策略优化研究
18
作者 马云峰 邓力 余佳祥 《物流科技》 2024年第22期1-7,共7页
作为电商仓库作业中耗时最长、成本最高的环节,订单拣选的作业效率一直是仓库管理中的关键问题。文章针对拣选策略选择问题,选择Perfect Pick系统的电商仓库作为背景,对单个拣选台进行研究,提出订单分批和订单排序两种拣选策略并进行对... 作为电商仓库作业中耗时最长、成本最高的环节,订单拣选的作业效率一直是仓库管理中的关键问题。文章针对拣选策略选择问题,选择Perfect Pick系统的电商仓库作为背景,对单个拣选台进行研究,提出订单分批和订单排序两种拣选策略并进行对比分析;以货箱搬运次数最少为目标,分别构建订单分批与订单排序两种拣选策略的整数规划模型,并设计贪婪算法进行求解。通过数值实验验证,订单排序策略在所有订单规模中均优于订单分批策略,根据仓库的订单规模,合理设置拣选台最大容量并选择合理的拣选策略,能够更好地提高拣选效率、优化仓库作业环节。 展开更多
关键词 Perfect pick系统 订单拣选 订单分批 订单排序
在线阅读 下载PDF
Study on the Optimum Picking Time of Callicarpa kwangtungensis 被引量:1
19
作者 孙刚 晏晨 +3 位作者 陈维 马四补 李春植 李开斌 《Agricultural Science & Technology》 CAS 2016年第9期2171-2173,2182,共4页
[Objective] This study was conducted to compare total contents of poliumoside and forsythoside B from Callicarpa kwangtungensis Chun in Qiandongnan Miao and Dong Autonomous Prefecture collected in different seasons, w... [Objective] This study was conducted to compare total contents of poliumoside and forsythoside B from Callicarpa kwangtungensis Chun in Qiandongnan Miao and Dong Autonomous Prefecture collected in different seasons, which could provide reference for its deep development and utilization. [Methods] Poliumoside and forsythoside B were measured according to the pharmacopoeia standard in the middle of each month in 2014, and the yield of C. kwangtungensis was simultaneously evaluated. All these results provided data reference for the determination of suitable picking time for C. kwangtungensis. [Results] The results showed the content of poliumoside and forsythoside B in C. kwangtungensis was the highest in November, and the content of the medicinal material in August was over eight times higher than the pharmacopoeia standard, besides at this month the yield was the highest during the year. Comprehensively, mid October is the optimum picking time for C. kwangtungensis in Taijiang. [Conclusion] Dynamic variations of content of poliumoside and forsythoside B in and yield of C. kwangtungensis were investigated, which would significantly benefit production of C. kwangtungensis in Qiandongnan Miao and Dong Autonomous Prefecture. 展开更多
关键词 Poliumoside Forsythoside B picking time
在线阅读 下载PDF
Multiple People Picking Assignment and Routing Optimization Based on Genetic Algorithm
20
作者 孙慧 《科技视界》 2014年第1期26-27,57,共3页
In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picki... In order to improve the picking efficiency,reduce the picking time,this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object.Discuss the picking task allocation and routing problems.Establish the TSP model of order-picking system.Create a heuristic algorithm bases on the Genetic Algorithm(GA)which help to solve the task allocating problem and to get the associated order-picking routes.And achieve the simulation experiment with the Visual 6.0C++platform to prove the rationality of the model and the effectiveness of the arithmetic. 展开更多
关键词 拣选效率 采收期 遗传算法 计算方法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部