期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
PMoE:在P-tuning中引入混合专家的参数高效微调框架 被引量:4
1
作者 王浩 王珺 +3 位作者 胡海峰 周飞飞 龚锐 张索非 《计算机应用研究》 北大核心 2025年第7期1956-1963,共8页
大语言模型(LLM)在推理和生成任务中的表现显著提升,但现有的开源LLM在处理专业领域问题时仍存在知识不足,亟需针对特定任务进行微调。传统微调方法在多任务学习中难以兼顾低成本与高效性。为此,提出了一种名为PMoE的参数高效微调框架... 大语言模型(LLM)在推理和生成任务中的表现显著提升,但现有的开源LLM在处理专业领域问题时仍存在知识不足,亟需针对特定任务进行微调。传统微调方法在多任务学习中难以兼顾低成本与高效性。为此,提出了一种名为PMoE的参数高效微调框架。该框架基于P-tuning方法,并引入混合专家机制,在保持低成本微调的同时增强多任务处理能力。PMoE在Transformer模块的每一层构建可训练的专家模块,以替代P-tuning中的提示词模块,并采用路由机制根据输入任务特征动态分配任务。此外,PMoE的专家模块支持拆卸,实现不同任务场景下的模型复用,进一步降低计算成本。实验结果表明,PMoE在中国医学领域数据集上相较于P-tuning方法性能提升6.24%,并在多任务处理和迁移学习方面表现优越,验证了其高效性与广泛适用性。 展开更多
关键词 大语言模型 参数高效微调 p-tuning 混合专家 多任务学习
在线阅读 下载PDF
基于Bert-BiLSTM-CRF模型的中文命名实体识别 被引量:1
2
作者 龙星全 李佳 《吉林大学学报(信息科学版)》 2025年第2期384-393,共10页
针对现有的中文命名实体识别算法没有充分考虑实体识别任务的数据特征,存在中文样本数据的类别不平衡、训练数据中的噪声太大和每次模型生成数据的分布差异较大的问题,提出了一种以BERT-BiLSTM-CRF(Bidirectional Encoder Representatio... 针对现有的中文命名实体识别算法没有充分考虑实体识别任务的数据特征,存在中文样本数据的类别不平衡、训练数据中的噪声太大和每次模型生成数据的分布差异较大的问题,提出了一种以BERT-BiLSTM-CRF(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field)为基线改进的中文命名实体识别模型。首先在BERT-BiLSTM-CRF模型上结合P-Tuning v2技术,精确提取数据特征,然后使用3个损失函数包括聚焦损失(Focal Loss)、标签平滑(Label Smoothing)和KL Loss(Kullback-Leibler divergence loss)作为正则项参与损失计算。实验结果表明,改进的模型在Weibo、Resume和MSRA(Microsoft Research Asia)数据集上的F 1得分分别为71.13%、96.31%、95.90%,验证了所提算法具有更好的性能,并且在不同的下游任务中,所提算法易于与其他的神经网络结合与扩展。 展开更多
关键词 中文命名实体识别 BERT-BiLSTM-CRF模型 p-tuning v2技术 损失函数
在线阅读 下载PDF
大语言模型融合知识图谱的装备问答系统研究
3
作者 王美华 王兴芬 张友星 《人工智能与机器人研究》 2025年第3期684-697,共14页
在大数据时代,海量的互联网信息飞速增长,人们对信息获取的精准度与效率提出了更高的要求。随着企业信息化和装备管理现代化的不断推进,对海量企业装备信息进行有效的提炼、管理与利用,对于提升企业装备知识的应用价值以及企业资源的利... 在大数据时代,海量的互联网信息飞速增长,人们对信息获取的精准度与效率提出了更高的要求。随着企业信息化和装备管理现代化的不断推进,对海量企业装备信息进行有效的提炼、管理与利用,对于提升企业装备知识的应用价值以及企业资源的利用效率具有重要意义。本研究提出了一套融合大语言模型自然语言处理能力的系统,可智能理解用户查询并提供精准的装备信息。通过采用P-Tuning v2方法对大语言模型进行微调,大幅提升了其在企业装备领域对关键词的识别和提取能力。同时,借助企业装备知识图谱作为本地知识库,为模型提供行业领域知识,使其能够将相关信息作为问题的上下文进行学习。基于此,还设计了提示工程来引导模型生成更准确的回复,并对结果进行了效果评估。实验结果表明,相较于直接使用大语言模型,该基于知识图谱增强的大语言模型在企业装备领域的智能化回复准确率更高,为企业装备问答系统的建设提供了有力支持。In the era of big data, the volume of Internet information is growing at an astonishing rate, and people have put forward higher requirements for the accuracy and efficiency of information acquisition. With the continuous advancement of enterprise informatization and modernization of equipment management, effectively extracting, managing and utilizing massive enterprise equipment information is of great significance for enhancing the application value of enterprise equipment knowledge and improving the efficiency of enterprise resource utilization. This study proposes a system that integrates the natural language processing capabilities of large language models, which can intelligently understand user queries and provide precise equipment information. By using the P-Tuning v2 method to fine-tune the large language model, its ability to recognize and extract keywords in the field of enterprise equipment has been significantly enhanced. At the same time, with the help of the enterprise equipment knowledge graph as a local knowledge base, industry-specific knowledge is provided to the model, enabling it to learn relevant information in the context of the question. Based on this, prompt engineering is designed to guide the model to generate more accurate responses, and the results are evaluated. Experimental results show that compared with directly using large language models, the knowledge graph-enhanced large language model has a higher accuracy rate in intelligent responses in the field of enterprise equipment, providing strong support for the construction of enterprise equipment question-answering systems. 展开更多
关键词 大语言模型 知识图谱 p-tuning v2方法 企业装备
在线阅读 下载PDF
多模态预训练模型在金融票据信息抽取中的应用
4
作者 颜政锦 叶正 葛君 《计算机工程与应用》 北大核心 2025年第9期186-193,共8页
金融领域的票据信息抽取是一项复杂且具有挑战的任务,其目标是从金融文档中准确抽取票据所包含的关键信息。金融票据作为商业活动中重要的信息载体,其准确提取对于商业决策和财务分析具有重要意义。然而,由于票据格式的不规范性,在实际... 金融领域的票据信息抽取是一项复杂且具有挑战的任务,其目标是从金融文档中准确抽取票据所包含的关键信息。金融票据作为商业活动中重要的信息载体,其准确提取对于商业决策和财务分析具有重要意义。然而,由于票据格式的不规范性,在实际应用中可能导致关键信息的丢失,如数据中键值对不完整或缺失等问题,给金融票据信息抽取任务带来了挑战。当前,LayoutLMV3模型是主流的信息抽取的方法之一,它结合了自然语言处理和多模态技术,能够在大规模金融文档中进行信息抽取。但它在处理复杂布局的文档时准确性会下降,处理长文本时因包含大量的字符可能难以捕捉其中重要的信息。为了解决上述挑战和问题,以LayoutLMV3为基线模型,引入了P-Tuning V1技术,不仅能够解决特定问题(如金融票据中的键值关系),还具备适应不同情境和任务的能力,而且可以利用多模态的文本、图像和布局信息来更全面地理解票据内容。P-Tuning V1通过引入可训练的连续提示嵌入,即“prompt”,作为模型输入的一部分,用以表示文本数据中的“键”信息。同时,采用离散提示作为“值”的一部分,两者相结合构成完整的键值对。实验结果表明,相较于基于LayoutLMV3的方法,结合的新方法在Finance-Receipts数据集上取得了显著的提升,在F1得分上从95.95%提高到96.69%。 展开更多
关键词 信息抽取 多模态 预训练 LayoutLMv3 p-tuning V1
在线阅读 下载PDF
基于ChatGLM的水生动物疾病诊断智能对话系统的优化研究 被引量:3
5
作者 尹娴 冯艳红 叶仕根 《现代电子技术》 北大核心 2024年第14期177-181,共5页
水产品作为重要的食物来源之一,在养殖过程中出现的疾病问题严重影响着养殖业的可持续发展。针对水生动物疾病诊断智能对话系统存在复杂的专业性知识和准确性低的问题,提出一种基于ChatGLM模型的改进水生动物疾病诊断相关问题的优化方... 水产品作为重要的食物来源之一,在养殖过程中出现的疾病问题严重影响着养殖业的可持续发展。针对水生动物疾病诊断智能对话系统存在复杂的专业性知识和准确性低的问题,提出一种基于ChatGLM模型的改进水生动物疾病诊断相关问题的优化方法。该方法通过在ChatGLM模型的中间层插入Adapter模块,针对相关的专业问题进行微调,提高了模型的专业性和准确性。同时采用P-tuning方法对输入部分进行高效的参数微调,使得对特定任务的调整更加精确。通过在水生动物疾病诊断对话数据集上的验证得出,该方法的双语评估替补(BLEU)指标从65.3%提升至75.1%,有效地解决了水生动物疾病诊断智能对话系统存在的准确性和专业性问题,为水生动物疾病诊断提供了有价值的辅助决策。 展开更多
关键词 ChatGLM 水生动物疾病诊断 智能对话系统 Adapter模块 p-tuning方法 BLEU
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部