The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to ...The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to nonlinear systems remains limited due to excessive computation.This work develops an efficient method for propagating distribution-free P-box processes in nonlinear dynamics.First,using the Covariance Analysis Describing Equation Technique(CADET),the dynamic problems with P-box processes are transformed into interval Ordinary Differential Equations(ODEs).These equations provide the Mean-and-Covariance(MAC)bounds of the system responses in relation to the MAC bounds of P-box-process excitations.They also separate the previously coupled P-box analysis and nonlinear-dynamic simulations into two sequential steps,including the MAC bound analysis of excitations and the MAC bounds calculation of responses by solving the interval ODEs.Afterward,a Gaussian assumption of the CADET is extended to the P-box form,i.e.,the responses are approximate parametric Gaussian P-box processes.As a result,the probability bounds of the responses are approximated by using the solutions of the interval ODEs.Moreover,the Chebyshev method is introduced and modified to efficiently solve the interval ODEs.The proposed method is validated based on test cases,including a duffing oscillator,a vehicle ride,and an engineering black-box problem of launch vehicle trajectory.Compared to the reference solutions based on the Monte Carlo method,with relative errors of less than 3%,the proposed method requires less than 0.2% calculation time.The proposed method also possesses the ability to handle complex black-box problems.展开更多
This paper proposes a novel model named as “imprecise stochastic process model” to handle the dynamic uncertainty with insufficient sample information in real-world problems. In the imprecise stochastic process mode...This paper proposes a novel model named as “imprecise stochastic process model” to handle the dynamic uncertainty with insufficient sample information in real-world problems. In the imprecise stochastic process model, the imprecise probabilistic model rather than a precise probability distribution function is employed to characterize the uncertainty at each time point for a time-variant parameter, which provides an effective tool for problems with limited experimental samples. The linear correlation between variables at different time points for imprecise stochastic processes is described by defining the auto-correlation coefficient function and the crosscorrelation coefficient function. For the convenience of analysis, this paper gives the definition of the P-box-based imprecise stochastic process and categorizes it into two classes: parameterized and non-parameterized P-box-based imprecise stochastic processes. Besides, a time-variant reliability analysis approach is developed based on the P-box-based imprecise stochastic process model,through which the interval of dynamic reliability for a structure under uncertain dynamic excitations or time-variant factors can be obtained. Finally, the effectiveness of the proposed method is verified by investigating three numerical examples.展开更多
基金supported by the major advanced research project of Civil Aerospace from State Administration of Science,Technology and Industry of China.
文摘The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to nonlinear systems remains limited due to excessive computation.This work develops an efficient method for propagating distribution-free P-box processes in nonlinear dynamics.First,using the Covariance Analysis Describing Equation Technique(CADET),the dynamic problems with P-box processes are transformed into interval Ordinary Differential Equations(ODEs).These equations provide the Mean-and-Covariance(MAC)bounds of the system responses in relation to the MAC bounds of P-box-process excitations.They also separate the previously coupled P-box analysis and nonlinear-dynamic simulations into two sequential steps,including the MAC bound analysis of excitations and the MAC bounds calculation of responses by solving the interval ODEs.Afterward,a Gaussian assumption of the CADET is extended to the P-box form,i.e.,the responses are approximate parametric Gaussian P-box processes.As a result,the probability bounds of the responses are approximated by using the solutions of the interval ODEs.Moreover,the Chebyshev method is introduced and modified to efficiently solve the interval ODEs.The proposed method is validated based on test cases,including a duffing oscillator,a vehicle ride,and an engineering black-box problem of launch vehicle trajectory.Compared to the reference solutions based on the Monte Carlo method,with relative errors of less than 3%,the proposed method requires less than 0.2% calculation time.The proposed method also possesses the ability to handle complex black-box problems.
文摘分布式电源(distributed generation,DG)出力的间歇性、随机性和波动性,增加了配电网负荷供应能力(loadsupply capacity,LSC)评估的复杂性。针对传统不确定性方法难以全面地体现LSC的客观不确定性和认知不确定性,提出一种基于仿射数学的变步长重复潮流法(theaffinealgorithm based step-varied repeated power flow method,AA-SVRPF)。利用概率函数的分布参数区间建立风速和光照强度的参数化P-box模型。通过AA直接求得LSC的焦元,结合证据理论生成负荷增长百分比的证据结构体形式。针对计算过程中存在多层循环嵌套、计算效率低的问题,提出基于矩阵运算的快速求解策略,提高了AA-SVRPF的计算效率。为体现不同供电水平时的LSC的不确定性,采用静态负荷供应风险概率作为LSC的度量指标。通过算例的对比分析,结果验证了该方法的可行性和有效性。
基金supported by the Science Challenge Project,China(No.TZ2018007)the National Science Fund for Distinguished Young Scholars,China(No.51725502)+2 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51621004)the Fundamental Research Foundation of China(No.JCKY2020110C105)the National Natural Science Foundation of China(No.52105253)。
文摘This paper proposes a novel model named as “imprecise stochastic process model” to handle the dynamic uncertainty with insufficient sample information in real-world problems. In the imprecise stochastic process model, the imprecise probabilistic model rather than a precise probability distribution function is employed to characterize the uncertainty at each time point for a time-variant parameter, which provides an effective tool for problems with limited experimental samples. The linear correlation between variables at different time points for imprecise stochastic processes is described by defining the auto-correlation coefficient function and the crosscorrelation coefficient function. For the convenience of analysis, this paper gives the definition of the P-box-based imprecise stochastic process and categorizes it into two classes: parameterized and non-parameterized P-box-based imprecise stochastic processes. Besides, a time-variant reliability analysis approach is developed based on the P-box-based imprecise stochastic process model,through which the interval of dynamic reliability for a structure under uncertain dynamic excitations or time-variant factors can be obtained. Finally, the effectiveness of the proposed method is verified by investigating three numerical examples.