Let G be a finite group. Suppose that H is a subgroup of G. We say that H is s-semipermutable in G if HG_p = G_p H for any Sylow p-subgroup G_p of G with(p, |H|) = 1,where p is a prime dividing the order of G. We give...Let G be a finite group. Suppose that H is a subgroup of G. We say that H is s-semipermutable in G if HG_p = G_p H for any Sylow p-subgroup G_p of G with(p, |H|) = 1,where p is a prime dividing the order of G. We give a p-nilpotent criterion of G under the hypotheses that some subgroups of G are s-semipermutable in G. Our result is a generalization of the famous Burnside's p-nilpotent criterion.展开更多
Let P∈SylpG,ch(P) be any characteristic subgroup of P. A group C is called a Cp-group if G satisfies the condition 'NG(ch(P)) is p-nilpotent implies that G is p-nilpotent'. In this paper some properties on Gp...Let P∈SylpG,ch(P) be any characteristic subgroup of P. A group C is called a Cp-group if G satisfies the condition 'NG(ch(P)) is p-nilpotent implies that G is p-nilpotent'. In this paper some properties on Gp-groups and some suffcient conditions for a group to be p-nilpotent are obtained.展开更多
A subgroup H of G is called s-conditionally permutable in G if for every Sylow subgroup T of G, there exists an element x ∈ G such that HTK = T^KH. In this paper, we investigate further the influence of s-conditional...A subgroup H of G is called s-conditionally permutable in G if for every Sylow subgroup T of G, there exists an element x ∈ G such that HTK = T^KH. In this paper, we investigate further the influence of s-conditionally permutability of some 2-maximal subgroups of the Sylow subgroup of G, on the structure of finite groups. New criteria for a group G being p-nilpotent are obtained.展开更多
In this paper, the influence of s-semipermutable, c~#-normal, subnormally embedded and ss-quasinormal subgroups on the p-nilpotency of finite groups is investigated and some recent results are generalized.
In this paper, we deal mainly with the following problem: if every 2-maximal subgroup of a Sylow p-subgroup of a finite group G is S-seminormal in G, what conditions force G to be p-nilpotent? As an application of mai...In this paper, we deal mainly with the following problem: if every 2-maximal subgroup of a Sylow p-subgroup of a finite group G is S-seminormal in G, what conditions force G to be p-nilpotent? As an application of main results, some sufficient conditions for finite nilpotent groups and finite supersolvable groups are obtained.展开更多
A subgroup H of a group G is called F-z-supplemented in G if there exists a subgroup K of G, such that G = HK and H∩K≤ Z∞F(G), where Z∞F(G) is the F-hypercenter of G. We obtain some results about the F-z-suppl...A subgroup H of a group G is called F-z-supplemented in G if there exists a subgroup K of G, such that G = HK and H∩K≤ Z∞F(G), where Z∞F(G) is the F-hypercenter of G. We obtain some results about the F-z-supplemented subgroups and use them to determine the structure of some groups.展开更多
In this paper the influence of s-quasinormally embedded and c-supplemented subgroups on the p-nilpotency of finite groups is investigate and some recent results are generalized.
Let G be a finite group. A subgroup H of G is called an H-subgroup in G if NG(H)∩ H^g ≤ H for all g C G. A subgroup H of G is called a weakly H-subgroup in G if there exists a normal subgroup K of G such that G = ...Let G be a finite group. A subgroup H of G is called an H-subgroup in G if NG(H)∩ H^g ≤ H for all g C G. A subgroup H of G is called a weakly H-subgroup in G if there exists a normal subgroup K of G such that G = HK and H N K is an H-subgroup in G. In this paper, we investigate the structure of the finite group G under the assumption that every subgroup of G of prime order or of order 4 is a weakly H-subgroup in G. Our results improve and generalize several recent results in the literature.展开更多
Let τ be a subgroup functor and H a p-subgroup of a finite group G. Let G= G/H_G and H= H/H_G. We say that H is Φ-τ-supplement in G if G has a subnormal subgroup T and a τ-subgroup S contained in H such that G=H T...Let τ be a subgroup functor and H a p-subgroup of a finite group G. Let G= G/H_G and H= H/H_G. We say that H is Φ-τ-supplement in G if G has a subnormal subgroup T and a τ-subgroup S contained in H such that G=H T and H∩T≤SΦ(H). In this paper,some new characterizations of hypercyclically embedability and p-nilpotency of a finite group are obtained based on the assumption that some primary subgroups are Φ-τ-supplement in G.展开更多
Let P be a Sylow p-subgroup of a group G with the smallest generator number d, where p is a prime. Denote by Md(P) = (P1, P2,..., Pd) a set of maximal subgroups of P such that φ(P) = ∩n^d=1Pn. In this paper, w...Let P be a Sylow p-subgroup of a group G with the smallest generator number d, where p is a prime. Denote by Md(P) = (P1, P2,..., Pd) a set of maximal subgroups of P such that φ(P) = ∩n^d=1Pn. In this paper, we investigate the structure of a finite group G under the assumption that the maximal subgroups in Md(P) are weakly s-permutably embedded in G, some interesting results are obtained which generalize some recent results. Finally, we give some further results in terms of weakly s-permutably embedded subgroups.展开更多
In this note, we prove that if G is a finite group, then G is p-nilpotent if and only if there exists a positive integer n such that [x,y,…y(n)]∈Op′(G) for any x,y∈G.
In the present paper, we give some sufficient conditions for the commutativity of restricted Lie superalgebras and characterize some properties of restricted Lie superalgebras with semisimple elements.
In the literature, p-nilpotency of the normalizers of p-subgroups has an important influence on finite p-nilpotent groups. In this paper, we extend the p-nilpotency to psupersolvability and choose every normal p-subgr...In the literature, p-nilpotency of the normalizers of p-subgroups has an important influence on finite p-nilpotent groups. In this paper, we extend the p-nilpotency to psupersolvability and choose every normal p-subgroups H of P such that |H| = pdand explore p-supersolvability of G by the conditions of weakly M-supplemented properties of H and psupersolvability of the normalizer NG(H), where 1 ≤ pd<|P |. Also, we study the p-nilpotency of G under the assumptions that NG(P) is p-nilpotent and the weakly M-supplemented condition on a subgroup K such that K_(p)■K and P′≤ K_(p) ≤ Φ(P), Kp is a Sylow p-subgroup K. To some extent, our main results can be regarded as generalizations of the Frobenius theorem.展开更多
Let G be a finite group.We denote byν(G)the probability that two randomly chosen elements of G generate a nilpotent subgroup.In this paper,we characterize the structure of finite groups G with lower bounds\({1\over p...Let G be a finite group.We denote byν(G)the probability that two randomly chosen elements of G generate a nilpotent subgroup.In this paper,we characterize the structure of finite groups G with lower bounds\({1\over p},\,{{p^{2}+8}\over{9p^{2}}}\)and\({p+3}\over{4p}\)onν(G),where p is a prime divisor of∣G∣.展开更多
We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K ofG such that G = HK and H ∩K ≤ core(H). In this paper it is proved that a finite group G is p-nilpotentif G is S4-free and e...We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K ofG such that G = HK and H ∩K ≤ core(H). In this paper it is proved that a finite group G is p-nilpotentif G is S4-free and every minimal subgroup of P ∩ GN is c-supplemented in NG(P), and when p = 2 P isquaternion-free, where p is the smallest prime number dividing the order of G, P a Sylow p-subgroup of G.As some applications of this result, some known results are generalized.展开更多
Let G be a finite group,and let P be a Sylow p-subgroup of G.Under the hypothesis that NG(P)is p-nilpotent,we provide some conditions to give a p-nilpotency criterion of finite groups by Engel condition,which improves...Let G be a finite group,and let P be a Sylow p-subgroup of G.Under the hypothesis that NG(P)is p-nilpotent,we provide some conditions to give a p-nilpotency criterion of finite groups by Engel condition,which improves some recent results.展开更多
It is known that the product of two nilpotent subgroups of a finite group is not necessarily nilpotent.In this paper, we study the influence of the Engel condition on the product of two nilpotent subgroups. Ou...It is known that the product of two nilpotent subgroups of a finite group is not necessarily nilpotent.In this paper, we study the influence of the Engel condition on the product of two nilpotent subgroups. Our results generalize some well-known results.展开更多
In recent years,a series of papers about cover-avoiding property of subgroups appeared and all the studies were connected with chief factors of a finite group.However,about the cover-avoiding property of subgroups for...In recent years,a series of papers about cover-avoiding property of subgroups appeared and all the studies were connected with chief factors of a finite group.However,about the cover-avoiding property of subgroups for non-chief factor,there is no study up to now.The purpose of this paper is to build the theory.Let A be a subgroup of a finite group G and Σ:G0≤G1≤…≤Gn some subgroup series of G.Suppose that for each pair(K,H) such that K is a maximal subgroup of H and G i 1 K < H G i for some i,either A ∩ H = A ∩ K or AH = AK.Then we say that A is Σ-embedded in G.In this paper,we study the finite groups with given systems of Σ-embedded subgroups.The basic properties of Σ-embedded subgroups are established and some new characterizations of some classes of finite groups are given and some known results are generalized.展开更多
Let F be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are shown: (1) G ∈ F if and only if there is a normal subgroup H such that G/H ∈ F a...Let F be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are shown: (1) G ∈ F if and only if there is a normal subgroup H such that G/H ∈ F and every maximal subgroup of all Sylow subgroups of H is either c-normal or s-quasinormally embedded in G; (2) G ∈F if and only if there is a soluble normal subgroup H such that G/H∈F and every maximal subgroup of all Sylow subgroups of F(H), the Fitting subgroup of H, is either e-normally or s-quasinormally embedded in G.展开更多
A subgroup H of a finite group G is said to be an SS-quasinormal subgroup of G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B. In this paper, we investigate the structure ...A subgroup H of a finite group G is said to be an SS-quasinormal subgroup of G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B. In this paper, we investigate the structure of a group under the assumption that every subgroup with order pm of a Sylow p-subgroup P of G is SS-quasinormal in G for a fixed positive integer m. Some interesting results related to the p-nilpotency and supersolvability of a finite group are obtained. For example, we prove that G is p-nilpotent if there is a subgroup D of P with 1 < |D| < |P| such that every subgroup of P with order |D| or 2|D| whenever p = 2 and |D| = 2 is SS-quasinormal in G, where p is the smallest prime dividing the order of G and P is a Sylow p-subgroup of G.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11271085)the Major Projects in Basic Research and Applied Research(Natural Science)of Guangdong Province(Grant No.2017KZDXM058)+1 种基金Funds of Guangzhou Science and Technology(Grant No.201804010088)the Science and Technology Research Foundation of Education Department of Jiangxi Province(Grant No.GJJ171109)
文摘Let G be a finite group. Suppose that H is a subgroup of G. We say that H is s-semipermutable in G if HG_p = G_p H for any Sylow p-subgroup G_p of G with(p, |H|) = 1,where p is a prime dividing the order of G. We give a p-nilpotent criterion of G under the hypotheses that some subgroups of G are s-semipermutable in G. Our result is a generalization of the famous Burnside's p-nilpotent criterion.
基金This research was supported by National Natural Scicnce Foundation of China and Foundation of Guangxi Education Committee
文摘Let P∈SylpG,ch(P) be any characteristic subgroup of P. A group C is called a Cp-group if G satisfies the condition 'NG(ch(P)) is p-nilpotent implies that G is p-nilpotent'. In this paper some properties on Gp-groups and some suffcient conditions for a group to be p-nilpotent are obtained.
基金The Scientific Research Foundation of Sichuan Provincial Education Department of China(No.08zb082)
文摘A subgroup H of G is called s-conditionally permutable in G if for every Sylow subgroup T of G, there exists an element x ∈ G such that HTK = T^KH. In this paper, we investigate further the influence of s-conditionally permutability of some 2-maximal subgroups of the Sylow subgroup of G, on the structure of finite groups. New criteria for a group G being p-nilpotent are obtained.
基金Supported by SRFPYED(2017ZDX041)and SRFPYED(2016ZDX151)
文摘In this paper, the influence of s-semipermutable, c~#-normal, subnormally embedded and ss-quasinormal subgroups on the p-nilpotency of finite groups is investigated and some recent results are generalized.
文摘In this paper, we deal mainly with the following problem: if every 2-maximal subgroup of a Sylow p-subgroup of a finite group G is S-seminormal in G, what conditions force G to be p-nilpotent? As an application of main results, some sufficient conditions for finite nilpotent groups and finite supersolvable groups are obtained.
文摘A subgroup H of a group G is called F-z-supplemented in G if there exists a subgroup K of G, such that G = HK and H∩K≤ Z∞F(G), where Z∞F(G) is the F-hypercenter of G. We obtain some results about the F-z-supplemented subgroups and use them to determine the structure of some groups.
基金Foundation item: Supported by the National Nature Science Foundation of China(11071229) Supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions(10KJD110004)
文摘In this paper the influence of s-quasinormally embedded and c-supplemented subgroups on the p-nilpotency of finite groups is investigate and some recent results are generalized.
基金supported by the Deanship of Scientific Research(DSR) at King Abdulaziz University(KAU) represented by the Unit of Research Groups through the grant number(MG/31/01) for the group entitled "Abstract Algebra and its Applications"
文摘Let G be a finite group. A subgroup H of G is called an H-subgroup in G if NG(H)∩ H^g ≤ H for all g C G. A subgroup H of G is called a weakly H-subgroup in G if there exists a normal subgroup K of G such that G = HK and H N K is an H-subgroup in G. In this paper, we investigate the structure of the finite group G under the assumption that every subgroup of G of prime order or of order 4 is a weakly H-subgroup in G. Our results improve and generalize several recent results in the literature.
基金Supported by the National Natural Science Foundation of China(Grant No.11371335)
文摘Let τ be a subgroup functor and H a p-subgroup of a finite group G. Let G= G/H_G and H= H/H_G. We say that H is Φ-τ-supplement in G if G has a subnormal subgroup T and a τ-subgroup S contained in H such that G=H T and H∩T≤SΦ(H). In this paper,some new characterizations of hypercyclically embedability and p-nilpotency of a finite group are obtained based on the assumption that some primary subgroups are Φ-τ-supplement in G.
基金the National Natural Science Foundation of China(Grant Nos.1120108211171353)+2 种基金China Postdoctoral Science Foundation(Grant No.2013T60866)the Natural Science Foundation of Guangdong Province(Grant No.S201204007267)Outstanding Young Teachers Training Project of Guangdong Province(GrantNo.Yq2013061)
文摘Let P be a Sylow p-subgroup of a group G with the smallest generator number d, where p is a prime. Denote by Md(P) = (P1, P2,..., Pd) a set of maximal subgroups of P such that φ(P) = ∩n^d=1Pn. In this paper, we investigate the structure of a finite group G under the assumption that the maximal subgroups in Md(P) are weakly s-permutably embedded in G, some interesting results are obtained which generalize some recent results. Finally, we give some further results in terms of weakly s-permutably embedded subgroups.
文摘In this note, we prove that if G is a finite group, then G is p-nilpotent if and only if there exists a positive integer n such that [x,y,…y(n)]∈Op′(G) for any x,y∈G.
基金The Youth Science Foundation of Northeast Normal University (111494027) and the NNSF (10271076) of China.
文摘In the present paper, we give some sufficient conditions for the commutativity of restricted Lie superalgebras and characterize some properties of restricted Lie superalgebras with semisimple elements.
基金Supported by the National Natural Science Foundation of China(Grant No.12001436)the Natural Science Foundation of Sichuan Province(Grant No.2022NSFSC1843)+3 种基金Chunhui Plan Cooperative Scientific Research Project of Ministry of Education of the People’s Republic of Chinathe Fundamental Research Funds of China West Normal University(Grant Nos.17E09118B032)。
文摘In the literature, p-nilpotency of the normalizers of p-subgroups has an important influence on finite p-nilpotent groups. In this paper, we extend the p-nilpotency to psupersolvability and choose every normal p-subgroups H of P such that |H| = pdand explore p-supersolvability of G by the conditions of weakly M-supplemented properties of H and psupersolvability of the normalizer NG(H), where 1 ≤ pd<|P |. Also, we study the p-nilpotency of G under the assumptions that NG(P) is p-nilpotent and the weakly M-supplemented condition on a subgroup K such that K_(p)■K and P′≤ K_(p) ≤ Φ(P), Kp is a Sylow p-subgroup K. To some extent, our main results can be regarded as generalizations of the Frobenius theorem.
基金Supported by NSF of China(Grant No.12061011)NSF of Guangxi(Grant Nos.2020GXNSFDA238014,2021GXNSFAA220105)。
文摘Let G be a finite group.We denote byν(G)the probability that two randomly chosen elements of G generate a nilpotent subgroup.In this paper,we characterize the structure of finite groups G with lower bounds\({1\over p},\,{{p^{2}+8}\over{9p^{2}}}\)and\({p+3}\over{4p}\)onν(G),where p is a prime divisor of∣G∣.
基金This work was supported by a research grant of Shanxi Province for the first author and partially supported by a fund of UGC(HK) for the second author (Grant No. 2160126, 1999/2000).
文摘We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K ofG such that G = HK and H ∩K ≤ core(H). In this paper it is proved that a finite group G is p-nilpotentif G is S4-free and every minimal subgroup of P ∩ GN is c-supplemented in NG(P), and when p = 2 P isquaternion-free, where p is the smallest prime number dividing the order of G, P a Sylow p-subgroup of G.As some applications of this result, some known results are generalized.
基金the support from NSF of China(Grant No.12061083)EDF of Yunnan Province(Grant No.2019J0026)+2 种基金NSF of Yunnan Province(Grant No.202101AT070023)the support from NSF of China(Grants Nos.12071093,12026212)NSF of Guangdong Province(Grant No.2021A1515010217)。
文摘Let G be a finite group,and let P be a Sylow p-subgroup of G.Under the hypothesis that NG(P)is p-nilpotent,we provide some conditions to give a p-nilpotency criterion of finite groups by Engel condition,which improves some recent results.
基金Supported by the Nitional Science Foundation of China !(19871073)
文摘It is known that the product of two nilpotent subgroups of a finite group is not necessarily nilpotent.In this paper, we study the influence of the Engel condition on the product of two nilpotent subgroups. Our results generalize some well-known results.
基金supported by National Natural Science Foundation of China (Grant No.11071229)Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (Grant No.2010T2J12)
文摘In recent years,a series of papers about cover-avoiding property of subgroups appeared and all the studies were connected with chief factors of a finite group.However,about the cover-avoiding property of subgroups for non-chief factor,there is no study up to now.The purpose of this paper is to build the theory.Let A be a subgroup of a finite group G and Σ:G0≤G1≤…≤Gn some subgroup series of G.Suppose that for each pair(K,H) such that K is a maximal subgroup of H and G i 1 K < H G i for some i,either A ∩ H = A ∩ K or AH = AK.Then we say that A is Σ-embedded in G.In this paper,we study the finite groups with given systems of Σ-embedded subgroups.The basic properties of Σ-embedded subgroups are established and some new characterizations of some classes of finite groups are given and some known results are generalized.
基金the Natural Science Foundation of Chinathe Natural Science Foundation of Guangxi Autonomous Region (No.0249001)
文摘Let F be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are shown: (1) G ∈ F if and only if there is a normal subgroup H such that G/H ∈ F and every maximal subgroup of all Sylow subgroups of H is either c-normal or s-quasinormally embedded in G; (2) G ∈F if and only if there is a soluble normal subgroup H such that G/H∈F and every maximal subgroup of all Sylow subgroups of F(H), the Fitting subgroup of H, is either e-normally or s-quasinormally embedded in G.
基金supported by National Natural Science Foundation of China (Grant No. 10771132)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200802800011)+1 种基金the Research Grant of Shanghai University, Shanghai Leading Academic Discipline Project (Grant No. J50101)Natural Science Foundation of Anhui Province (Grant No.KJ2008A030)
文摘A subgroup H of a finite group G is said to be an SS-quasinormal subgroup of G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B. In this paper, we investigate the structure of a group under the assumption that every subgroup with order pm of a Sylow p-subgroup P of G is SS-quasinormal in G for a fixed positive integer m. Some interesting results related to the p-nilpotency and supersolvability of a finite group are obtained. For example, we prove that G is p-nilpotent if there is a subgroup D of P with 1 < |D| < |P| such that every subgroup of P with order |D| or 2|D| whenever p = 2 and |D| = 2 is SS-quasinormal in G, where p is the smallest prime dividing the order of G and P is a Sylow p-subgroup of G.