Vanadium oxide(VO_(x))has garnered significant attention in the realm of resistive random-access memory(RRAM)owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive s...Vanadium oxide(VO_(x))has garnered significant attention in the realm of resistive random-access memory(RRAM)owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive switching and inferior stability hinder its practical applications.Herein,an RRAM named VO_(x)/TiO_(2)/n^(++)Si device is prepared.It displays bipolar resistive switching behavior and shows superior cycle endurance(>200),a significantly high on/off ratio(>10^(2))and long-term stability.The tremendous improvement in the stability of the VO_(x)/TiO_(2)/n^(++)Si device compared with the Cu/VOx/n^(++)Si device is due to the p-i-n structure of VO_(x)/TiO_(2)/n^(++)Si.The switching mechanism of the VO_(x)/TiO_(2)/n^(++)Si device is attributed to the growth and annihilation of Cu conductive filaments.展开更多
研究了p-In Ga N层厚度对p-i-n结构In Ga N太阳电池性能的影响。模拟计算发现,随着p-In Ga N层厚度的增加,In Ga N太阳电池效率降低。较差的p-In Ga N欧姆接触特性会破坏In Ga N太阳电池性能。计算结果还表明,无论欧姆接触特性好坏,随着...研究了p-In Ga N层厚度对p-i-n结构In Ga N太阳电池性能的影响。模拟计算发现,随着p-In Ga N层厚度的增加,In Ga N太阳电池效率降低。较差的p-In Ga N欧姆接触特性会破坏In Ga N太阳电池性能。计算结果还表明,无论欧姆接触特性好坏,随着p-In Ga N层厚度的增加,短路电流下降是导致In Ga N电池效率降低的主要原因。选择较薄的p-In Ga N层有利于提高p-i-n结构In Ga N太阳电池的效率。展开更多
The growth, fabrication, and characterization of a solar-blind A1GaN-based p-i-n back-illuminated photodetector with a high temperature A1N template are reported for the first time. The photodetector was fabricated fr...The growth, fabrication, and characterization of a solar-blind A1GaN-based p-i-n back-illuminated photodetector with a high temperature A1N template are reported for the first time. The photodetector was fabricated from multilayer AIx Gal-xN films grown by MOCVD on double-polished c-plane (0001) sapphire substrates. Crack free, high A1 content (0.7) A1GaN multilayer structure,designed for the solar-blind p-i-n back-illuminated photodetector,was grown on a high temperature A1N template without a nuclear layer. The high quality of the epitaxial layers is demonstrated by in-situ optical reflectance monitoring curve, triple-axis X-ray diffraction, and atomic-force microscope. At a 1.8V bias, the processed p-i-n photodetector exhibits a solar-blind photoresponse with a maximum responsivity of 0. 0864A/W at 270nm. The photodetector exhibits a forward turn-on voltage at around 3.5V and a reverse breakdown voltage above 20V, and the leakage current is below 20pA for 2V reverse bias.展开更多
基金National Natural Science Foundation of China(No.61376017)。
文摘Vanadium oxide(VO_(x))has garnered significant attention in the realm of resistive random-access memory(RRAM)owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive switching and inferior stability hinder its practical applications.Herein,an RRAM named VO_(x)/TiO_(2)/n^(++)Si device is prepared.It displays bipolar resistive switching behavior and shows superior cycle endurance(>200),a significantly high on/off ratio(>10^(2))and long-term stability.The tremendous improvement in the stability of the VO_(x)/TiO_(2)/n^(++)Si device compared with the Cu/VOx/n^(++)Si device is due to the p-i-n structure of VO_(x)/TiO_(2)/n^(++)Si.The switching mechanism of the VO_(x)/TiO_(2)/n^(++)Si device is attributed to the growth and annihilation of Cu conductive filaments.
文摘研究了p-In Ga N层厚度对p-i-n结构In Ga N太阳电池性能的影响。模拟计算发现,随着p-In Ga N层厚度的增加,In Ga N太阳电池效率降低。较差的p-In Ga N欧姆接触特性会破坏In Ga N太阳电池性能。计算结果还表明,无论欧姆接触特性好坏,随着p-In Ga N层厚度的增加,短路电流下降是导致In Ga N电池效率降低的主要原因。选择较薄的p-In Ga N层有利于提高p-i-n结构In Ga N太阳电池的效率。
文摘The growth, fabrication, and characterization of a solar-blind A1GaN-based p-i-n back-illuminated photodetector with a high temperature A1N template are reported for the first time. The photodetector was fabricated from multilayer AIx Gal-xN films grown by MOCVD on double-polished c-plane (0001) sapphire substrates. Crack free, high A1 content (0.7) A1GaN multilayer structure,designed for the solar-blind p-i-n back-illuminated photodetector,was grown on a high temperature A1N template without a nuclear layer. The high quality of the epitaxial layers is demonstrated by in-situ optical reflectance monitoring curve, triple-axis X-ray diffraction, and atomic-force microscope. At a 1.8V bias, the processed p-i-n photodetector exhibits a solar-blind photoresponse with a maximum responsivity of 0. 0864A/W at 270nm. The photodetector exhibits a forward turn-on voltage at around 3.5V and a reverse breakdown voltage above 20V, and the leakage current is below 20pA for 2V reverse bias.