Pharmaceutical-Food Homologous Plant-Derived Carbon Dots (P-CDs) have emerged as revolutionary nanomaterials in environmental pollutant management, demonstrating transformative potential for green chemistry and sustai...Pharmaceutical-Food Homologous Plant-Derived Carbon Dots (P-CDs) have emerged as revolutionary nanomaterials in environmental pollutant management, demonstrating transformative potential for green chemistry and sustainable material applications. These carbon dots establish an innovative technical framework by integrating dual "detection-remediation" functionalities through eco-friendly synthesis and high-value conversion of medicinal-edible plants and agroforestry waste. Their core advantages originate from structural templating effects induced by natural functional groups (polyphenols, amino acids) in plant precursors combined with heteroatom self-doping, which synergistically optimizes optical properties. This combination achieves quantum yields ranging from 3.06% to 84.9% and detection sensitivities spanning nanomolar to micromolar concentrations. In pollutant detection applications, P-CDs enable ultrasensitive identification of heavy metals (Hg^(2+) , Cu^(2+) , Fe^(3+) ) and organic contaminants (pesticides, antibiotics) through multi-mechanistic interactions including static quenching (SQ), dynamic quenching (DQ), and F rster resonance energy transfer (FRET). However, technological translation faces critical challenges including quantum yield heterogeneity (>40-fold variation), matrix interference in complex environmental samples (signal drift exceeding 12%), and scalability-related process inconsistencies. Future research priorities should focus on three key areas: standardization of synthesis protocols, development of surface passivation strategies ( e.g. , SiO_(2) encapsulation), and optimization of heterojunction designs to enhance interference resistance. The integration of in situ characterization techniques (particularly X-ray absorption spectroscopy) with machine learning-driven parameter optimization could significantly refine detection-remediation synergies. Concurrently, establishing a comprehensive lifecycle assessment framework becomes imperative for evaluating environmental impacts and scalability potential. This technology pioneers a sustainable paradigm for pollution control by bridging the gap between nanomaterial innovation and industrial deployment, thereby accelerating progress toward global ecological security objectives.展开更多
It is particularly important to monitor Cr(Ⅵ)for its high toxicity.In this paper,a novel,simple,low-cost and"on-off-on"fluorescence sensor of carbon dots doped with nitrogen and phosphorus(N,P-CDs)was devel...It is particularly important to monitor Cr(Ⅵ)for its high toxicity.In this paper,a novel,simple,low-cost and"on-off-on"fluorescence sensor of carbon dots doped with nitrogen and phosphorus(N,P-CDs)was developed via one-step hydrothermal method for highly sensitive and good selective detection of Cr(Ⅵ)and ascorbic acid(AA).The prepared N,P-CDs exhibited the ability for detection of Cr(Ⅵ)based on the inner filter effect(IFE)and static quenching.Under optimized conditions,the fluorescence quenching efficiency of N,P-CDs showed a good linear correlation with Cr(Ⅵ)concentration ranged from0.68 to 87.38μmol/L(R^(2)=0.9946).The limit of detection(LOD)was 0.18μmol/L,which was acceptable compared with the maximum Cr(Ⅵ)concentration of 0.96μmol/L in drinking water prescribed by WHO.In addition,the N,P-CDs/Cr(Ⅵ)hybrid were also used as"turn-on"fluorescent transducers for detecting AA with a wide linear region ranged from 0.02 to933.33μmol/L(R^(2)=0.9972).Furthermore,the N,P-CDs fluorescence sensor had admissible applicability for Cr(Ⅵ)and AA detection in actual water samples with acceptable recovery rate,indicating that the fluorescence sensor had great application potential in environmental monitoring and food field.展开更多
文摘Pharmaceutical-Food Homologous Plant-Derived Carbon Dots (P-CDs) have emerged as revolutionary nanomaterials in environmental pollutant management, demonstrating transformative potential for green chemistry and sustainable material applications. These carbon dots establish an innovative technical framework by integrating dual "detection-remediation" functionalities through eco-friendly synthesis and high-value conversion of medicinal-edible plants and agroforestry waste. Their core advantages originate from structural templating effects induced by natural functional groups (polyphenols, amino acids) in plant precursors combined with heteroatom self-doping, which synergistically optimizes optical properties. This combination achieves quantum yields ranging from 3.06% to 84.9% and detection sensitivities spanning nanomolar to micromolar concentrations. In pollutant detection applications, P-CDs enable ultrasensitive identification of heavy metals (Hg^(2+) , Cu^(2+) , Fe^(3+) ) and organic contaminants (pesticides, antibiotics) through multi-mechanistic interactions including static quenching (SQ), dynamic quenching (DQ), and F rster resonance energy transfer (FRET). However, technological translation faces critical challenges including quantum yield heterogeneity (>40-fold variation), matrix interference in complex environmental samples (signal drift exceeding 12%), and scalability-related process inconsistencies. Future research priorities should focus on three key areas: standardization of synthesis protocols, development of surface passivation strategies ( e.g. , SiO_(2) encapsulation), and optimization of heterojunction designs to enhance interference resistance. The integration of in situ characterization techniques (particularly X-ray absorption spectroscopy) with machine learning-driven parameter optimization could significantly refine detection-remediation synergies. Concurrently, establishing a comprehensive lifecycle assessment framework becomes imperative for evaluating environmental impacts and scalability potential. This technology pioneers a sustainable paradigm for pollution control by bridging the gap between nanomaterial innovation and industrial deployment, thereby accelerating progress toward global ecological security objectives.
基金financially sponsored by the National Natural Science Foundation of China(21777131,22176154)Science and Technology Department Foundation of Sichuan Province(22ZDYF1945)
文摘It is particularly important to monitor Cr(Ⅵ)for its high toxicity.In this paper,a novel,simple,low-cost and"on-off-on"fluorescence sensor of carbon dots doped with nitrogen and phosphorus(N,P-CDs)was developed via one-step hydrothermal method for highly sensitive and good selective detection of Cr(Ⅵ)and ascorbic acid(AA).The prepared N,P-CDs exhibited the ability for detection of Cr(Ⅵ)based on the inner filter effect(IFE)and static quenching.Under optimized conditions,the fluorescence quenching efficiency of N,P-CDs showed a good linear correlation with Cr(Ⅵ)concentration ranged from0.68 to 87.38μmol/L(R^(2)=0.9946).The limit of detection(LOD)was 0.18μmol/L,which was acceptable compared with the maximum Cr(Ⅵ)concentration of 0.96μmol/L in drinking water prescribed by WHO.In addition,the N,P-CDs/Cr(Ⅵ)hybrid were also used as"turn-on"fluorescent transducers for detecting AA with a wide linear region ranged from 0.02 to933.33μmol/L(R^(2)=0.9972).Furthermore,the N,P-CDs fluorescence sensor had admissible applicability for Cr(Ⅵ)and AA detection in actual water samples with acceptable recovery rate,indicating that the fluorescence sensor had great application potential in environmental monitoring and food field.