研究了粉末316L不锈钢添加活化剂的液相强化烧结。在1200~1350℃采用真空烧结,对含量为2%~8%的Cu3P和Fe Mo B两种烧结助剂进行比较,后者采用两种粒度。结果表明:Fe Mo B细粉强化作用最强;增加烧结助剂含量和提高烧结温度可以提高烧结...研究了粉末316L不锈钢添加活化剂的液相强化烧结。在1200~1350℃采用真空烧结,对含量为2%~8%的Cu3P和Fe Mo B两种烧结助剂进行比较,后者采用两种粒度。结果表明:Fe Mo B细粉强化作用最强;增加烧结助剂含量和提高烧结温度可以提高烧结密度;最佳条件为添加6%的Fe Mo B细粉、室温压制、1250℃烧结,烧结密度接近7.70g/cm3。另外,压缩试验表明添加量大于6%后,添加Fe Mo B的烧结制品的塑性比添加Cu3P的塑性要好。展开更多
The phase transformation and magnetic hysteresis properties of melt-spun Fe41 Pd41 B8 Si6 P4 ribbons subjected to the annealing at temperatures of 500-550℃were studied after holding for 0.1-60.0 h by transmission ele...The phase transformation and magnetic hysteresis properties of melt-spun Fe41 Pd41 B8 Si6 P4 ribbons subjected to the annealing at temperatures of 500-550℃were studied after holding for 0.1-60.0 h by transmission electron microscopy(TEM),X-ray diffraction(XRD)and thermomagnetic analysis.The additions of P,B and Si to the FePd alloy allowed us to achieve the coercivity of124 kA·m-1,which is 2.6 times higher than that of the melt-spun ribbons of the binary equiatomic FePd alloy.The high-coercivity Fe41Pd41B8 Si6 P4 alloy is nanocrystalline and is composed of the ordered L10-phase grains approximately 40 nm in size and inclusions of the Fe2(P,B)and Pd2(Si,B)phases.The coercivity kinetics is controlled by the phase transformation which can be divided into three stages:transformation from the bcc structure to nanosized regions of the fee and Fe2 P phases;transformation from the fee to L10 nanosized regions with somewhat different degrees of tetragonality and their ordering;and extensive growth of the weight fraction of L10 phase from the fee nanosized regions.P and B atoms occupy interstitial sites in the iron plane of L10 lattice,thus decreasing its Curie temperature(TC).展开更多
文摘研究了粉末316L不锈钢添加活化剂的液相强化烧结。在1200~1350℃采用真空烧结,对含量为2%~8%的Cu3P和Fe Mo B两种烧结助剂进行比较,后者采用两种粒度。结果表明:Fe Mo B细粉强化作用最强;增加烧结助剂含量和提高烧结温度可以提高烧结密度;最佳条件为添加6%的Fe Mo B细粉、室温压制、1250℃烧结,烧结密度接近7.70g/cm3。另外,压缩试验表明添加量大于6%后,添加Fe Mo B的烧结制品的塑性比添加Cu3P的塑性要好。
基金financially supported by the Indian-Russian Collaborative Project(Nos.17-52-45097 and INT/RUS/RFBR/P-267)the State Assignment of Ministry of Science and Education of Russia(No.AAAA-A18-118020290129-5).
文摘The phase transformation and magnetic hysteresis properties of melt-spun Fe41 Pd41 B8 Si6 P4 ribbons subjected to the annealing at temperatures of 500-550℃were studied after holding for 0.1-60.0 h by transmission electron microscopy(TEM),X-ray diffraction(XRD)and thermomagnetic analysis.The additions of P,B and Si to the FePd alloy allowed us to achieve the coercivity of124 kA·m-1,which is 2.6 times higher than that of the melt-spun ribbons of the binary equiatomic FePd alloy.The high-coercivity Fe41Pd41B8 Si6 P4 alloy is nanocrystalline and is composed of the ordered L10-phase grains approximately 40 nm in size and inclusions of the Fe2(P,B)and Pd2(Si,B)phases.The coercivity kinetics is controlled by the phase transformation which can be divided into three stages:transformation from the bcc structure to nanosized regions of the fee and Fe2 P phases;transformation from the fee to L10 nanosized regions with somewhat different degrees of tetragonality and their ordering;and extensive growth of the weight fraction of L10 phase from the fee nanosized regions.P and B atoms occupy interstitial sites in the iron plane of L10 lattice,thus decreasing its Curie temperature(TC).