In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equ...In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic–elastic forward modeling and vector-based P-and S-wave separation method is proposed. In this method, we divide the fluid–solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic–elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P-and S-wave equations in the curvilinear coordinates system are derived to realize the P-and S-wave separation method.展开更多
HSLA steels need extremely low levels of tramp elements like P,S,H and O t.During tapping the steel is deoxidized with aluminum and in the secondary metallurgy sulphur (【 10 ppm) and hydrogen (【 1 ppm) are extracted...HSLA steels need extremely low levels of tramp elements like P,S,H and O t.During tapping the steel is deoxidized with aluminum and in the secondary metallurgy sulphur (【 10 ppm) and hydrogen (【 1 ppm) are extracted.After tank degassing the steel is strongly Ca-treated by wire feeding to form CaS instead of MnS.Non-metallic inclusions in the steel and centre segregation with MnS are sinks for hydrogen which result in HIC (Hydrogen Induced Cracking).Therefore these steels ask for excellent oxide cleanness and S-contents of 【 10 ppm.Macro inclusions of 】 50 μm are harmful for the product.These large inclusions are seldom and difficult to be detected.Small inclusions of 【 15 μm do no harm to the product.The origin of non-metallic inclusions is,roughly spoken,one third each of de-oxidation-/reoxidation products,refractory and casting powder.Slag carry-over is mainly avoided by sensitive electronic devices.Slag covers and shrouding systems of the steel stream during the transfer of metal between ladle,tundish and mold are effective to avoid reoxidation.Systems to control the flow of steel in tundish and mold favor the floatation of inclusions and their even distribution in the strand.展开更多
基金financially supported by the Natural Science Foundation of China(No.41774133)the Open Funds of SINOPEC Key Laboratory of Geophysics(No.wtyjy-wx2017-01-04)National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05024-003-011)
文摘In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic–elastic forward modeling and vector-based P-and S-wave separation method is proposed. In this method, we divide the fluid–solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic–elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P-and S-wave equations in the curvilinear coordinates system are derived to realize the P-and S-wave separation method.
文摘HSLA steels need extremely low levels of tramp elements like P,S,H and O t.During tapping the steel is deoxidized with aluminum and in the secondary metallurgy sulphur (【 10 ppm) and hydrogen (【 1 ppm) are extracted.After tank degassing the steel is strongly Ca-treated by wire feeding to form CaS instead of MnS.Non-metallic inclusions in the steel and centre segregation with MnS are sinks for hydrogen which result in HIC (Hydrogen Induced Cracking).Therefore these steels ask for excellent oxide cleanness and S-contents of 【 10 ppm.Macro inclusions of 】 50 μm are harmful for the product.These large inclusions are seldom and difficult to be detected.Small inclusions of 【 15 μm do no harm to the product.The origin of non-metallic inclusions is,roughly spoken,one third each of de-oxidation-/reoxidation products,refractory and casting powder.Slag carry-over is mainly avoided by sensitive electronic devices.Slag covers and shrouding systems of the steel stream during the transfer of metal between ladle,tundish and mold are effective to avoid reoxidation.Systems to control the flow of steel in tundish and mold favor the floatation of inclusions and their even distribution in the strand.