期刊文献+
共找到7,541篇文章
< 1 2 250 >
每页显示 20 50 100
High-flow oxygen via oxygenating mouthguard in short upper gastrointestinal endoscopy:A randomised controlled trial
1
作者 Kim Hay Be Leonardo Zorron Cheng Tao Pu +7 位作者 Brett Pearce Matthew Lee Luke Fletcher Rebecca Cogan Philip Peyton Rhys Vaughan Marios Efthymiou Sujievvan Chandran 《World Journal of Gastrointestinal Endoscopy》 2022年第12期777-788,共12页
BACKGROUND Anaesthetic care during upper gastrointestinal(GI)endoscopy has the unique challenge of maintaining ventilation and oxygenation via a shared upper airway.Supplemental oxygen is recommended by international ... BACKGROUND Anaesthetic care during upper gastrointestinal(GI)endoscopy has the unique challenge of maintaining ventilation and oxygenation via a shared upper airway.Supplemental oxygen is recommended by international society guidelines,however,the optimal route or rate of oxygen delivery is not known.Various oxygen delivery devices have been investigated to improve oxygenation during upper GI endoscopy,however,these are limited by commercial availability,costs and in some cases,the expertise required for insertion.Anecdotally at our centre,higher flows of supplemental oxygen can safely be delivered via an oxygenating mouthguard routinely used during upper GI endoscopic procedures.AIM To assess the incidence of hypoxaemia(SpO2<90%)in patients undergoing upper GI endoscopy receiving supplemental oxygen using an oxygenating mouthguard at 20 L/min flow compared to standard nasal cannula(SNC)at 2 L/min flow.METHODS A single centre,prospective,randomised clinical trial at two sites of an Australian tertiary hospital between October 2020 and September 2021 was conducted.Patients undergoing elective upper gastrointestinal endoscopy under deep sedation were randomised to receive supplemental oxygen via high-flow via oxygenating mouthguard(HFMG)at 20 L/min flow or SNC at 2 L/min flow.The primary outcome was the incidence of hypoxaemia of any duration measured by pulse oximetry.Intraprocedural-related,procedural-related,and sedation-related adverse events and patient-reported outcomes were also recorded.RESULTS Three hundred patients were randomised.Eight patients were excluded after randomisation.292 patients were included in the intention-to-treat analysis.The incidence of hypoxaemia was significantly reduced in those allocated HFMG.Six patients(4.4%)allocated to HFMG experienced an episode of hypoxaemia,compared to thirty-four(22.1%)patients allocated to SNC(P value<0.001).No significant difference was observed in the rates of adverse events or patient-reported outcome measures.CONCLUSION The use of HFMG offers a novel approach to reducing the incidence of hypoxaemia during short upper gastrointestinal endoscopic procedures in low-risk patients undergoing deep sedation. 展开更多
关键词 Upper gastrointestinal endoscopy Supplementary oxygen Hypoxaemia oxygenating mouthguard
暂未订购
Voltage-dependent anion channel 1 oligomerization regulates PANoptosis in retinal ischemia–reperfusion injury 被引量:1
2
作者 Hao Wan Xiaoxia Ban +6 位作者 Ye He Yandi Yang Ximin Hu Lei Shang Xinxing Wan Qi Zhang Kun Xiong 《Neural Regeneration Research》 2026年第4期1652-1664,共13页
Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,... Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,and necroptosis.Oligomerization of mitochondrial voltage-dependent anion channel 1 is an important pathological event in regulating cell death in retinal ischemia–reperfusion injury.However,its role in PANoptosis remains largely unknown.In this study,we demonstrated that voltage-dependent anion channel 1 oligomerization-mediated mitochondrial dysfunction was associated with PANoptosis in retinal ischemia–reperfusion injury.Inhibition of voltage-dependent anion channel 1 oligomerization suppressed mitochondrial dysfunction and PANoptosis in retinal cells subjected to ischemia–reperfusion injury.Mechanistically,mitochondria-derived reactive oxygen species played a central role in the voltagedependent anion channel 1-mediated regulation of PANoptosis by promoting PANoptosome assembly.Moreover,inhibiting voltage-dependent anion channel 1 oligomerization protected against PANoptosis in the retinas of rats subjected to ischemia–reperfusion injury.Overall,our findings reveal the critical role of voltage-dependent anion channel 1 oligomerization in regulating PANoptosis in retinal ischemia–reperfusion injury,highlighting voltage-dependent anion channel 1 as a promising therapeutic target. 展开更多
关键词 1-methyl-4-phenyl-1 2 3 6-TETRAHYDROPYRIDINE apoptosis ischemia–reperfusion injury mitochondrial dysfunction NECROPTOSIS oxidative stress PANoptosis PYROPTOSIS reactive oxygen species voltage-dependent anion channel 1
暂未订购
Traumatic brain injury:Bridging pathophysiological insights and precision treatment strategies 被引量:1
3
作者 Yujia Lu Jie Jin +7 位作者 Huajing Zhang Qianying Lu Yingyi Zhang Chuanchuan Liu Yangfan Liang Sijia Tian Yanmei Zhao Haojun Fan 《Neural Regeneration Research》 2026年第3期887-907,共21页
Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the curr... Blood-brain barrier disruption and the neuroinflammatory response are significant pathological features that critically influence disease progression and treatment outcomes.This review systematically analyzes the current understanding of the bidirectional relationship between blood-brain barrier disruption and neuroinflammation in traumatic brain injury,along with emerging combination therapeutic strategies.Literature review indicates that blood-brain barrier disruption and neuroinflammatory responses are key pathological features following traumatic brain injury.In the acute phase after traumatic brain injury,the pathological characteristics include primary blood-brain barrier disruption and the activation of inflammatory cascades.In the subacute phase,the pathological features are characterized by repair mechanisms and inflammatory modulation.In the chronic phase,the pathological features show persistent low-grade inflammation and incomplete recovery of the blood-brain barrier.Various physiological changes,such as structural alterations of the blood-brain barrier,inflammatory cascades,and extracellular matrix remodeling,interact with each other and are influenced by genetic,age,sex,and environmental factors.The dynamic balance between blood-brain barrier permeability and neuroinflammation is regulated by hormones,particularly sex hormones and stress-related hormones.Additionally,the role of gastrointestinal hormones is receiving increasing attention.Current treatment strategies for traumatic brain injury include various methods such as conventional drug combinations,multimodality neuromonitoring,hyperbaric oxygen therapy,and non-invasive brain stimulation.Artificial intelligence also shows potential in treatment decision-making and personalized therapy.Emerging sequential combination strategies and precision medicine approaches can help improve treatment outcomes;however,challenges remain,such as inadequate research on the mechanisms of the chronic phase traumatic brain injury and difficulties with technology integration.Future research on traumatic brain injury should focus on personalized treatment strategies,the standardization of techniques,costeffectiveness evaluations,and addressing the needs of patients with comorbidities.A multidisciplinary approach should be used to enhance treatment and improve patient outcomes. 展开更多
关键词 artificial intelligence biomarkers blood-brain barrier combination therapy drug delivery EXOSOMES focused ultrasound hyperbaric oxygen therapy INFLAMMATION NANOCARRIERS NEURODEGENERATION personalized medicine stem cells therapeutic hypothermia traumatic brain injury
暂未订购
Chirality-Induced Suppression of Singlet Oxygen in Lithium-Oxygen Batteries with Extended Cycle Life
4
作者 Kyunghee Chae Youngbi Kim +11 位作者 Yookyeong Oh Hosik Hahn Jaehyun Son Youngsin Kim Hyuk‑Joon Kim Hyun Jeong Lee Dohyub Jang Jooho Moon Kisuk Kang Jeong Woo Han Filipe Marques Mota Dong Ha Kim 《Nano-Micro Letters》 2026年第2期124-137,共14页
Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and of... Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and offering the highest theoretical energy density(~3.5 k Wh kg^(-1))among discussed candidates.Contributing to the poor cycle life of currently reported Li-O_(2)cells is singlet oxygen(1O_(2))formation,inducing parasitic reactions,degrading key components,and severely deteriorating cell performance.Here,we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets(Co_(3)O_(4)NSs)as cathode materials to suppress 1O_(2)in Li-O_(2)batteries for the first time.Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O_(2)during discharge and charge,respectively,compared to conventional carbon paperbased cells,consistent with differential electrochemical mass spectrometry results,which indicate a near-theoretical charge-to-O_(2)ratio(2.04 e-/O_(2)).Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level,enhancing Co 3d-O 2p hybridization,stabilizing reaction intermediates,and lowering activation barriers for Li_(2)O_(2)formation and decomposition.These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li-O_(2)batteries,abridging the current gap to commercialization. 展开更多
关键词 Singlet oxygen suppression Chirality-induced spin selectivity effect Lithium–oxygen batteries Oxygen evolution reaction Battery stability
在线阅读 下载PDF
Optimizing the RuCo Ratio for More Efficient and Durable Oxygen Reduction in Acidic Media
5
作者 WEI Mingrui ZHANG Shuai +1 位作者 HUANG Shuo WANG Chao 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期25-32,共8页
The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a serie... The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs. 展开更多
关键词 ELECTROCATALYSIS oxygen reduction DURABILITY RuCo/C fuel cell
原文传递
Fe-loaded S,N co-doped carbon catalyst for oxygen reduction reaction with enhanced electrocatalytic activity and durability
6
作者 Shengzhi He Chunwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期315-321,共7页
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-... Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications. 展开更多
关键词 zinc-air batteries oxygen reduction reaction iron-loaded nitrogen-doped carbon sulfur-doping
在线阅读 下载PDF
An effective strategy to enhance the cathodic performance of low-temperature solid oxide fuel cells through Mo-doping
7
作者 Juanjuan Tu Shanshan Jiang +7 位作者 Yujia Wang Weitao Hu Lingyan Cheng Jingjing Jiang Huangang Shi Beibei Xiao Chao Su Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期322-334,共13页
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0... This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells. 展开更多
关键词 molybdenum doping cathodic performance oxygen reduction reaction low-temperature solid oxide fuel cells
在线阅读 下载PDF
Reducing agents for induction and maintenance therapy achieve long-term remission of refractory ulcerative colitis:A case report and review of literature
8
作者 Pamela B Sylvestre 《World Journal of Gastroenterology》 2026年第2期152-161,共10页
BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithel... BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithelial cells has a causal role leading to infiltration of neutrophils into the colonic mucosa and subsequent development of UC.This evidence-based mechanism identifies hydrogen peroxide as a therapeutic target for reducing agents in the treatment of UC.CASE SUMMARY Presented is a 41-year-old female with a 26-year history of refractory UC.Having developed steroid dependence and never achieving complete remission on treatment by conventional and advanced therapies,she began treatment with oral R-dihydrolipoic acid(RDLA),a lipid-soluble reducing agent with intracellular site of action.Within a week,rectal bleeding ceased.She was asymptomatic for three years until a highly stressful experience,when she noticed blood in her stool.RDLA was discontinued,and she began treatment with oral sodium thiosulfate pentahydrate(STS),a reducing agent with extracellular site of action.After a week,rectal bleeding ceased,and she resumed oral RDLA and discontinued STS.To date,she remains asymptomatic with normal stool calprotectin while on RDLA.CONCLUSION STS and RDLA are reducing agents that serve as highly effective and safe therapy for the induction and maintenance of remission in UC,even in patients refractory or poorly controlled by conventional and advanced therapies.Should preliminary findings be validated by subsequent clinical trials,the use of reducing agents could potentially prevent thousands of colectomies and represent a paradigm shift in the treatment of UC. 展开更多
关键词 Ulcerative colitis COLITIS Inflammatory bowel disease Hydrogen peroxide Sodium thiosulfate R-dihydrolipoic acid Reducing agent Redox homeostasis Reactive oxygen species Case report
暂未订购
Ultrahigh Dielectric Permittivity of a Micron-Sized Hf_(0.5)Zr_(0.5)O_(2) Thin-Film Capacitor After Missing of a Mixed Tetragonal Phase
9
作者 Wen Di Zhang Bing Li +3 位作者 Wei Wei Wang Xing Ya Wang Yan Cheng An Quan Jiang 《Nano-Micro Letters》 2026年第1期144-153,共10页
Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received wides... Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices.During bipolar high electric-field cycling in numbers close to dielectric breakdown,the dielectric permittivity suddenly increases by 30 times after oxygen-vacancy ordering and ferroelectric-to-nonferroelectric phase transition of near-edge plasma-treated Hf_(0.5)Zr_(0.5)O_(2) thin-film capacitors.Here we report a much higher dielectric permittivity of 1466 during downscaling of the capacitor into the diameter of 3.85μm when the ferroelectricity suddenly disappears without high-field cycling.The stored charge density is as high as 183μC cm^(−2) at an operating voltage/time of 1.2 V/50 ns at cycle numbers of more than 10^(12) without inducing dielectric breakdown.The study of synchrotron X-ray micro-diffraction patterns show missing of a mixed tetragonal phase.The image of electron energy loss spectroscopy shows the preferred oxygen-vacancy accumulation at the regions near top/bottom electrodes as well as grain boundaries.The ultrahigh dielectric-permittivity material enables high-density integration of extremely scaled logic and memory devices in the future. 展开更多
关键词 Hf_(0.5)Zr_(0.5)O_(2)thin film Ultrahigh dielectric permittivity Near-edge plasma treatment Oxygen vacancy Charge storage
在线阅读 下载PDF
Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2 被引量:2
10
作者 Zige Jiang Dexiang Liu +7 位作者 Tingting Li Chengcheng Gai Danqing Xin Yijing Zhao Yan Song Yahong Cheng Tong Li Zhen Wang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1776-1788,共13页
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an... The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease. 展开更多
关键词 apoptosis CYSTATHIONINE-Β-SYNTHASE nuclear factor erythroid 2-related factor 2 Huntington's disease hydrogen sulfide MITOCHONDRION NEUROPLASTICITY oxidative stress quinolinic acid reactive oxygen species
暂未订购
Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis 被引量:2
11
作者 Xiahong Tang Nan Zheng +8 位作者 Qingming Lin Yan You Zheng Gong Yangping Zhuang Jiali Wu Yu Wang Hanlin Huang Jun Ke Feng Chen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1103-1123,共21页
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr... Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning. 展开更多
关键词 bone marrow–derived mesenchymal stem cells cardiac arrest cardiac resuscitation hypoxic preconditioning liver isoform of phosphofructokinase mitochondria NEUROINFLAMMATION oxidative stress PYROPTOSIS reactive oxygen species
暂未订购
Bimetallic Single‑Atom Catalysts for Water Splitting 被引量:1
12
作者 Megha A.Deshmukh Aristides Bakandritsos Radek Zbořil 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期1-45,共45页
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ... Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process. 展开更多
关键词 Single-atom catalysts Single-atom dimers Hydrogen evolution Oxygen evolution Water splitting
在线阅读 下载PDF
Overview of in-situ oxygen production technologies for lunar resources 被引量:1
13
作者 Youpeng Xu Sheng Pang +5 位作者 Liangwei Cong Guoyu Qian Dong Wang Laishi Li Yusheng Wu Zhi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期233-255,共23页
The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extract... The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives. 展开更多
关键词 lunar resources in-situ oxygen production space metallurgy molten lunar regolith electrolysis
在线阅读 下载PDF
Ru⁃doped Co_(3)O_(4)/reduced graphene oxide:Preparation and electrocatalytic oxygen evolution property 被引量:1
14
作者 TIAN Tian ZHOU Meng +5 位作者 WEI Jiale LIU Yize MO Yifan YE Yuhan JIA Wenzhi HE Bin 《无机化学学报》 北大核心 2025年第2期385-394,共10页
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then... Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2). 展开更多
关键词 metal-organic framework GRAPHENE ELECTROCATALYST oxygen evolution reaction
在线阅读 下载PDF
Impact of Oxygen Vacancy on Performance of Amorphous InGaZnO Based Schottky Barrier Diode 被引量:1
15
作者 JIA Bin TONG Xiaowen +3 位作者 HAN Zikang QIN Ming WANG Lifeng HUANG Xiaodong 《发光学报》 北大核心 2025年第3期412-420,共9页
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin... Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes. 展开更多
关键词 INGAZNO Schottky barrier diode oxygen vacancy rectifying performance
在线阅读 下载PDF
Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance 被引量:1
16
作者 ZHAI Haoying WEN Lanzong +3 位作者 LIAO Wenjie LI Qin ZHOU Wenjun CAO Kun 《无机化学学报》 北大核心 2025年第5期1037-1048,共12页
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano... Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance. 展开更多
关键词 hydrothermal method tannic acid metal‑organic framework ELECTROCATALYSIS oxygen evolution reaction
在线阅读 下载PDF
High-areal-capacity and long-life sulfde-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity 被引量:4
17
作者 Yanchen Liu Yang Lu +6 位作者 Zongliang Zhang Bin Xu Fangbo He Yang Liu Yongle Chen Kun Zhang Fangyang Liu 《Journal of Energy Chemistry》 2025年第2期795-807,I0017,共14页
Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy densi... Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy density.However,the all-solid-state batteries with nickel-rich oxide cathodes suffer from performance degradation due to the reactions between the highly reactive surface oxygen of the cathode and the electrolyte,as well as the instability of the bulk oxygen structure in the cathode.Herein,we propose a synergistic modification design scheme to adjust the oxygen activity from surface to bulk.The LiBO_(2)coating inhibits the reactivity of surface lattice oxygen ions.Meanwhile,Zr doping in the bulk phase forms strong Zr-O covalent bonds that stabilize the bulk lattice oxygen structure.The synergistic effect of these modifications prevents the release of oxygen,thus avoiding the degradation of the cathode/SE interface.Additionally,the regulation of surface-to-bulk oxygen activity establishes a highly stable interface,thereby enhancing the lithium ion diffusion kinetics and mechanical stability of the cathode.Consequently,cathodes modified with this synergistic strategy exhibit outstanding performance in sulfide-based ASSLBs,including an ultra-long cycle life of 100,000 cycles,ultra-high rate capability at 45C,and 85% high active material content in the composite cathode.Additionally,ASSLB exhibits stable cycling under high loading conditions of 82.82 mg cm^(-2),achieving an areal capacity of 17.90 mA h cm^(-2).These encouraging results pave the way for practical applications of ASSLBs in fast charging,long cycle life,and high energy density in the future. 展开更多
关键词 Zr4+doping LiBO_(2)coating Surface-to-bulk Oxygen activity Interface stability Nickel-rich oxide cathodes All-solid-state batteries
在线阅读 下载PDF
Bond engineering:weakening Ru-O covalency for efficient and stable water oxidation in acidic solutions 被引量:3
18
作者 Yifan Yang Jingtong Guo +4 位作者 Lixiong Xu Chenyue Li Rongqian Ning Jun Ma Shuo Geng 《Journal of Energy Chemistry》 2025年第3期1-9,共9页
The persistent stability of ruthenium dioxide(RuO_(2))in acidic oxygen evolution reactions(OER)is compromised by the involvement of lattice oxygen(LO)and metal dissolution during the OER process.Heteroatom doping has ... The persistent stability of ruthenium dioxide(RuO_(2))in acidic oxygen evolution reactions(OER)is compromised by the involvement of lattice oxygen(LO)and metal dissolution during the OER process.Heteroatom doping has been recognized as a viable strategy to foster the stability of RuO_(2)for acidic OER applications.This study presented an ion that does not readily gain or lose electrons,Ba^(2+),into RuO_(2)(Ba-RuO_(2))nanosheet(NS)catalyst that increased the number of exposed active sites,achieving a current density of 10 mA/cm^(2)with an overpotential of only 229 mV and sustaining this output for over 250 h.According to density functional theory(DFT)and X-ray absorption spectroscopy,Ba doping resulted in a longer Ru-O bond length,which in turn diminished the covalency of the bond.This alteration curtailed the involvement of LO and the dissolution of ruthenium(Ru),thereby markedly improving the durability of the catalyst over extended periods.Additionally,attenuated total reflectance-surface enhanced infrared absorption spectroscopy analysis substantiated that the OER mechanism shifted from a LO-mediated pathway to an adsorbate evolution pathway due to Ba doping,thereby circumventing Ru over-oxidation and further enhancing the stability of RuO_(2).Furthermore,DFT findings uncovered that Ba doping optimizes the adsorption energy of intermediates,thus enhancing the OER activity in acidic environments.This study offers a potent strategy to guide future developments on Ru-based oxide catalysts'stability in an acidic environment. 展开更多
关键词 Oxygen evolution reaction in acid Bond covalency Rutheniumoxide Ba doping
在线阅读 下载PDF
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:2
19
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Comparison of a direct vs consultative advanced heart failure role in the outcomes of extracorporeal membrane oxygenation patients 被引量:2
20
作者 James Zhang Todd Nagamine +5 位作者 Kimberly Vu Mohammed Ali Nath Limpruttidham Maan Gozun Jesus Pino Moreno Dipanjan Banerjee 《World Journal of Transplantation》 2025年第3期128-134,共7页
BACKGROUND Advanced heart failure and transplant(AHFTC)teams are crucial in the management of patients in cardiogenic shock.We sought to explore the impact of AHFTC physicians on outcomes in patients receiving extraco... BACKGROUND Advanced heart failure and transplant(AHFTC)teams are crucial in the management of patients in cardiogenic shock.We sought to explore the impact of AHFTC physicians on outcomes in patients receiving extracorporeal membrane oxygenation(ECMO)support.AIM To determine whether outcomes differ in the care of ECMO patients when AHFTC physicians serve in a primary vs consultative role.METHODS We conducted a retrospective cohort study of 51 patients placed on veno-venous(VV)and veno-arterial(VA)ECMO between January 2015 and February 2023 at our institution.We compared ECMO outcomes between teams managed primarily by intensivists vs teams where AHFTC physicians played a direct role in ECMO management,including patient selection.Our primary outcome measure was survival to 30 days post hospital discharge.RESULTS For combined VA and VV ECMO patients,survival to 30 days post discharge in the AHFTC cohort was significantly higher(67%vs 30%,P=0.01),largely driven by a significantly increased 30-day post discharge survival in VA ECMO patients in the AHFTC group(64%vs 20%,P=0.05).CONCLUSION This study suggests that patients in shock requiring VA ECMO support may have improved survival 30 days after hospital discharge when an AHFTC team serves in a direct role in the selection and management of patients.Further studies are needed to validate this impact. 展开更多
关键词 Heart failure Extracorporeal membrane oxygenation Critical care Advanced heart failure and transplant cardiology MORTALITY
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部